Vineyard Cover Crops and Tillage Practices

Dr. Kerri Steenwerth
USDA-ARS
Today’s Roadmap

- Reducing Soil Erosion, Runoff, and Dust
- Reducing Greenhouse Gas Production by Altering Tillage Practices
- Soil Biology and Organic Matter
- Weed and Vine Management

Form and Function
Erosion and Runoff

- cover crops gave 45% and 80% reduction in runoff
- dependent upon cover crop type
- nutrient concentrations of runoff were the same among treatments
- **MORE** total nutrients were lost from cultivated soils.
- slope was only 1-2%
- Only 7-9” rain per year!

Larry Bettiga, Michael Kahn, Richard Smith, UCCE Farm Advisors
Smith et al. 2008, California Agriculture
Dust Reduction

- Provide improvements in air quality
- Reductions in dust generation related to reductions in mite pressure
- Potential improvements in predatory mite habitat
- Adopt no-till or reduced tillage practices
Revisiting the Roadmap

- Reducing Soil Erosion, Runoff, and Dust
- Reducing Greenhouse Gas Production by Altering Tillage Practices
• Viticultural activities that produce GHGs
• AB 32 requires monitoring of CO₂ emissions
• N₂O emissions not required to be monitored yet
Fossil Fuel Combustion

- One of largest components of GHG emissions
- Best understood
- Most easily **controlled** and **measured** by growers

- More fuel = more GHG emissions
 - gal. diesel = 12 kg CO$_2$e
 - gal. gasoline = 10.5 kg CO$_2$e

- Management
 - Biofuels can lessen impact
 - Onsite energy generation
 - Minimize fuel usage

- Research needs
Vineyard floor management

- **Conventional tillage** (<30% of crop residues left on the surface, multiple passes)
 - less carbon enters soil organic matter
 - greater production of CO₂
 - some N₂O production
 - greatest requirement for fossil fuels

- **Conservation tillage** (>30% of crop residues left on surface)
 - more carbon enters soil organic matter
 - less CO₂ produced due to soil management
 - less fuel required

- **No-Till systems** (No disturbance of the soil surface)
 - most carbon enters soil organic matter
 - least amount of fuel required
 - cover crops may decrease need for synthetic fertilizers
 - BUT may result in higher N₂O production

- Research needs
Revisiting the Roadmap

- Reducing Soil Erosion, Runoff and Dust
- Reducing Greenhouse Gas Production by Altering Tillage Practices
- Soil Biology and Organic Matter
Cover crops vs. Cultivation

Trios 102 or Rye

Cultivation
Cover crops improve soil carbon content

Microbial Respiration

Dissolved Organic C

Soil Organic Matter

‘Trios’, 10.98 ± 0.30 mg C kg⁻¹
‘Rye’, 9.45 ± 0.34 mg C kg⁻¹
‘Cultivation’, 7.18 ± 0.18 mg C kg⁻¹

Steenwerth and Belina, 2008
Cover crops improve soil N dynamics

Potential Nitrification

SAME TREND: Microbial Biomass N and Potential N Mineralization
In-row cover crops?

8-11” annual precipitation
240 gal/vine/year

4-6% of applied N (35 lbs. per acre) was collected on resin in ‘Herbicide’
Can cover crops reduce nematodes?

<table>
<thead>
<tr>
<th></th>
<th>Bacteria feeders</th>
<th>Fungal feeders</th>
<th>Plant parasitic</th>
<th>Omnivorous</th>
<th>Carnivorous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veraison:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under vine</td>
<td>15%</td>
<td>9%</td>
<td>74%</td>
<td>99% ring</td>
<td><1%</td>
</tr>
<tr>
<td>inter-row</td>
<td>52%</td>
<td>24%</td>
<td>19%</td>
<td>91% stunt</td>
<td>0</td>
</tr>
<tr>
<td>Harvest:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under vine</td>
<td>9%</td>
<td>13%</td>
<td>77%</td>
<td>96% ring</td>
<td><1%</td>
</tr>
<tr>
<td>inter-row</td>
<td>38%</td>
<td>41%</td>
<td>14%</td>
<td>91% stunt</td>
<td>1%</td>
</tr>
<tr>
<td>Dormancy:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under vine</td>
<td>5%</td>
<td>9%</td>
<td>85%</td>
<td>97% ring</td>
<td>0.4%</td>
</tr>
<tr>
<td>inter-row</td>
<td>48%</td>
<td>36%</td>
<td>13%</td>
<td>90% stunt</td>
<td>0%</td>
</tr>
</tbody>
</table>

S.R. Parker, USDA/ARS
Revisiting the Roadmap

- Soil Erosion, Runoff and Dust Reduction
- Reducing Greenhouse Gas Production by Altering Tillage Practices
- Soil Biology and Organic Matter

- Weed and Vine Management
Cover crops suppress weed biomass

Cover Crops

- **Rye**
- **Trios**

Weeds

- **Rye**
- **Trios**
Cover crop effects on vines?

- Documentation of reduced vigor

- In many cases, no effect on petiole nutrition or yield
 - Merlot, Napa Co. – 3 yrs. Baumgartner et al., 2008
 - Chardonnay, Monterey Co. – 5 yrs. Smith et al., 2008
 - Merlot, San Joaquin Co. – 1 yr., unpublished data

- Yeast assimilable nitrogen content and free amino acids in juice – no effect
 - Cabernet sauvignon, Napa Co. – 2 yrs.
 J. Lee and K. Steenwerth
Cover crop effects on vines?

• Water Stress - no effect on vine leaf water potentials?
 - Findings inconclusive

• Confounding factors: management of canopy and fertilizer, age of vineyard, scion and rootstock, and soil fertility

Hypothesis:
Cover crops enhance water infiltration despite water use via transpiration, potentially offsetting competition for water (Celette et al., 2005).
Cover crops as functional types?

- Build soil organic pools and soil microorganisms
- Enhance nitrogen retention
- Weed biomass reduction
- Shift weed and nematode composition
- Tool for water, nutrition and canopy management
Acknowledgements

• Larry Bettiga and Richard Smith, UCCE Monterey Co.
• Daryl Salm, Valley Farm Management
• Eli Carlisle, California Sustainable Winegrowing Alliance
• Dr. Jungmin Lee, Dr. Andrew McElrhone, Shane Parker, Kelley Belina, and Joshua Hunt, USDA/ARS