Estimating Vine Water Use:

The Quest for the Elusive K_c

Evapotranspiration

- Irrigation decisions require knowledge of plant water loss
- Water lost = Reference for replacement
- ET= the true amount of water lost to the atmosphere

ET_o = reference ET

- An estimate of what actual ET would be for a large area
- Reference "crop" is 100% ground cover of wellwatered turf
- Water use of crops in the area is calculated from that measure
- Measured in acre-inches (27154 gal.)

Crop Coefficient

- Still need to know the water use of the actual crop compared to the reference "crop"
- Requires a crop coefficient- K_c
- Crop Water Use (ET_c) = ET_o X K_c

Crop Coefficient

- Estimating ET_c is difficult
- The crop coefficient for grapes changes as the canopy changes
- More transpiration = Higher ET_c
- Therefore, accurate estimates of K_c require constant measurement.
- Williams demonstrated that it is canopy orientation (percent shaded ground) that drives
 K_c and not total canopy area

How to estimate K_c

Percent area shade of vineyard floor at solar noon (1:00 pm) Where y is K_c and x is percent shaded floor area

y = 0.002 + 0.017 x

- -29% shaded floor ; K_c = 0.500
- $ET_o of 2" X 0.500 = ET_c of 1"$
- 1 ac.-in. = 27154 gal.
- 729 vines per acre = 37 gal./vine

Vineyard K_c

Year 2000, Paso Robles Vineyard, PR1 weather station 10' X 6', 729 vines per acre

Published data from Williams 2001

Equals 36.7 gal./vine that week

Measuring Shade with Instrumentation

Remote sensing:

Uses NDVI

Calculated from Infrared and Near Infrared

- Satellites
- Fixed wing fly overs
- UAV fly overs

Issues:

Cloud cover Resolution Frequency Cost

The TOPS Satellite Irrigation Management System

Terrestrial Observation and Prediction System

- Landsat images
 - NDVI
 - Fractional cover (Fc)
 - K_{cb}
 - ET_{cb}
- Resolution of a 1/4 acre
- Fly over every 8 days
- May go to 4 or 5 in the future
- ~ 7 days before data is available

NASA Satellite Irrigation Management Support: Mapping Crop Water Requirements to Assist Growers in Optimizing Water Use

PROJECT TEAM: NASA Ames Research Center, California Dept. of Water Resources, Western Growers Association, California State University, Univ. of California Cooperative Extension, Desert Research Institute, USDA Ag. Research Service, USGS, Booth Ranches, Chiquita, Constellation Wines, Del Monte Produce, Dole, E & J. Gallo, Farming D, Fresh Express, Pereira Farms, Ryan Palm Farms

NASA SIMS web and mobile data services map crop canopy conditions and irrigation demand across 8 million acres of farm land in California

Data processing through supercomputing resources available through NASA Earth Exchange and OpenNEX, a collaboration between NASA and Amazon, Inc.

2- Year Cumulative ET, Pinot Noir, CA: TOPS-SIMS & Soil Water Balance

For more information, contact forrest.s.melton@nasa.gov, or visit https://c3.nasa.gov/water/projects/1/

Satellite Irrigation Management Support (SIMS) Framework

TOPS Satellite Irrigation Management Support

Disclaimer: This data is for research and evaluation purposes only.

Curator: Forrest Melton

Satellite Irrigation Management Support (SIMS) Framework

TOPS Satellite Irrigation Management Support

Fixed wing fly over

- Usually once a week
- Less cloud interference
- Cost
- Resolution of meters or centimeters

Unmanned Aerial Vehicles

- Highest resolution
- Always under cloud layer
- Cost
- Resolution of centimeters

CIMIS

California Irrigation Management Information System

– Where is the nearest station?

- Atascadero Station 163
- Blackwells Corner Station 54
- Kettleman Station 21

			Gal./Vine		
7/12-7/18	ETo	Кс	ETc	/Ac-in	Gal. lost
Atascadero	1.4	0.4	0.6	25.0	14.9
Blackwells Corner	2.1	0.4	0.9	25.0	22.4
Kettleman	2.1	0.4	0.9	25.0	22.8

Spatial CIMIS

5915 El Camino Real, Atascadero, CA 93422(35.4897, -120.6704)

Date	ETo (in)	Sol Rad Avg (Ly/day)
7/1/2015	0.17	407
7/2/2015	0.25	713
7/3/2015	0.24	724
7/4/2015	0.23	724
7/5/2015	0.23	722
7/6/2015	0.22	711
7/7/2015	0.24	731
7/8/2015	0.23	722
Tots/Avgs	1.81	682

6169 Airport Rd, Paso Robles, CA 93446(35.6994, -120.6360)

Date	ETo (in)	Sol Rad Avg (Ly/day)	
7/1/2015	0.18	378	
7/2/2015	0.26	650	
7/3/2015	0.26	719	
7/4/2015	0.25	719	
7/5/2015	0.25	714	
7/6/2015	0.24	705	
7/7/2015	0.25	715	
7/8/2015	0.25	720	
Tots/Avgs	1.94	665	

Resolution = 2 km^2

Combination of geostationary satellite data and CIMIS station data

The "Paso Panel"

- Developed by UCCE Viticultural Adviser Mark Battany
- Relatively easy to build
- Relatively inexpensive
- Easy to use
- Hard data

Measuring Shade with Visual Estimation

- Sample at solar noon
- Lay "ruler" in shaded area
- Estimate the Gap Fraction
 - Amount of light within the shade area subtracted from the shaded area
- Percent shade =

(Length of shade / Row width) X Gap Fraction X 100

Measuring Shade with Visual Estimation

8 ft. row 2 ft. shaded area 25% gaps

Means 25% shaded area, but only 75% of that is shade.

0.25 X 0.75 X 100 = 18.75% shaded area

Equals a K_c of 0.32

Estimating Vine Water Use:

The Quest for the Elusive K_c

