Wind flow and microclimate in vineyards and their impact on spore and pest dispersion and vineyard epidemiology

Rob Stoll

University of Utah
Disease Development

Microclimate

Aerial Dispersion

Plant Growth and Infection

Pathogen Development

Overwintering
Disease Development

- Aerial Dispersion
- Microclimate
- Overwintering
- Plant Growth and Infection
- Pathogen Development
Can we develop useful models for this system that are biophysically based (e.g., not purely empirical)?

If we can, what can we do with them?

1st Step, we need to study the system to understand:

- What biological and physical process are the most important?
- At what length and time scales should these processes be represented?
Vineyard Dispersion

Adapted from: Mahaffee and Stoll, Phytopathology 2016
Airborne Dissemination

Two main modes:

- **Short distance** -
 - Transport distances of about the canopy height and smaller
 - Impacted by source characteristics
 - Highly dependent on local topography and architecture
Airborne Dissemination

Long distance -
- Transport distances 100s m – 10s Km
- Presumably well behaved on average
- Impacted by topography and weather

Figure from Tallapragada et al., 2011
Simulated Particle flow

With increased row spacing stronger structures will form.
- Particles will be retained in the lower 75% of the canopy
- Particles will be ejected from the upper 25% of the canopy
Short Distance Transport

• Measured Winds (turbulence) and performed particle release experiments in two vineyards over four different years in Oregon.
 - 2011, 2013, 2016: “flat” VSP vineyard
 - 2014: “hilly” VSP vineyard
Short Distance Transport

In a vineyard -
- Winds are strongly channeled parallel to the rows
Observed Dispersion

Wind 21° from parallel

Wind 45° from parallel

Wind 89° from parallel
Modeling Airborne Transport

- **QUIC** Dispersion Modeling System (Pardyjak and Brown 2001; Williams et al. 2004)
- Validation and enhancements for vineyards ongoing (e.g., Ulmer et al., 2016).
QUIC System

- Joint development and support: LANL, UofU
- “Easy” to use Graphical User Interface (GUI)
QUIC Dispersion
QUIC Dispersion

- Comparison to field data
Leaf Energy Balance

\[R_s + R_L - \varepsilon \sigma T_L^4 = c_p g_H (T_L - T_a) + \lambda g_M \frac{(e_s(T_L) - e_a)}{\rho_{atm}} \]

Radiation = **Convection** + **Latent**
Vineyard Microclimate

- Leaf temperature (Thermal image and DTS)
 - 1 to 20°C higher for sun-exposed
 - On a sunny day at 27°C leaf temperature can be 28 - 40°C

Ambient Temperature - 23°C

△T>15°C

THE UNIVERSITY OF UTAH®
Microclimate Modeling Framework

Most models currently in use aggregate microclimate

Assumes homogeneity in horizontal or vertical directions
Model Discretization

- 3-D radiation model, complex 3-D models for conductances
- Ray Tracing for Radiation
- Aggregate volumes of leaves
 - Statistical representation of leaves
 - Leaf area density
 - Leaf angle
 - Leaf azimuth
- Ground surface energy budget (close the radiation exchange budget)
- GPU computing for fast execution

[Bailey et. al. 2014]
115,591 trees

Leaf Temperature
Evaporative Flux
Leaf Temperature Validation
Example Validation: Temperature

Dispersion + Growth + Microclimate + Infection

- Deposited Spore
- Infection
Powdery Mildew Example
Using a biophysical approach enables:

- predict yields
- predict disease/pests
- assess disease risk
- assess water use
Can we predict disease origin and spread?
Can we predict disease origin and spread?
Can we predict disease origin and spread?
Long-Range Vision: Cyber-Physical Systems

remote sensing

low-cost wireless sensors

drone scouts

heads-up display
Contributors and Funding

Collaborators:

- Eric Pardyjak
- Nathan Miller
- Lucas Ulmer
- Tim Price

- Walt Mahaffee
- Tara Neill

Funding:

- NSF: AGS-1255662, EPS 1208732
- ARS CRIS 5358-22000-039-00D
Instantaneous wind flow from Particle Imaging Velocimetry (PIV) between two model vineyard rows taken in the University of Utah wind tunnel.