Automated Visual Yield Estimation in Vineyards
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We present a vision system that automatically predicts yield in vineyards accurately and with high resolution.
Yield estimation traditionally requires tedious hand measurement, which is destructive, sparse in sampling,
and inaccurate. Our method is efficient, high-resolution, and it is the first such system evaluated in realistic
experimentation over several years and hundreds of vines spread over several acres of different vineyards.
Other existing research is limited to small test sets of 10 vines or less, or just isolated grape clusters, with tightly
controlled image acquisition and with artificially induced yield distributions. The system incorporates cameras
and illumination mounted on a vehicle driving through the vineyard. We process images by exploiting the three
prominent visual cues of texture, color, and shape into a strong classifier that detects berries even when they are
of similar color to the vine leaves. We introduce methods to maximize the spatial and the overall accuracy of the
yield estimates by optimizing the relationship between image measurements and yield. Our experimentation is
conducted over four growing seasons in several wine and table-grape vineyards. These are the first such results
from experimentation that is sufficiently sized for fair evaluation against true yield variation and real-world
imaging conditions from a moving vehicle. Analysis of the results demonstrates yield estimates that capture
up to 75% of spatial yield variance and with an average error between 3% and 11% of total yield. ¢ 2014 Wiley

Periodicals, Inc.

1. INTRODUCTION

Yield predictions in vineyards are important for managing
vines to optimize growth and eventual fruit quality. For
instance, if an overly large crop is forecast, fruit may be
removed during the season to achieve certain fruit quality
goals. This practice of crop thinning is much more effective
when based on an accurate yield estimate. Yield forecasts
also prepare a grower for the harvest operation, for shipping
their crop, storing their crop, and also selling their crop on
the market. Typical yield predictions are performed using
knowledge of historical yields and weather patterns along
with measurements manually taken in the field. The cur-
rent industry practice for predicting harvest yield is labor-
intensive, expensive, inaccurate, spatially sparse, destruc-
tive, and riddled with subjective inputs. Typically, the pro-
cess for yield prediction is for workers to sample a certain
percentage of the vineyard and extrapolate these measure-
ments to the entire vineyard. Agronomic studies have es-
tablished that large spatial variability in vineyards across
multiple countries and growing conditions exists (Taylor,
Tisseyre, Bramley, Reid, & Stafford, 2005). However, the
sample size is often too small in comparison to the spa-
tial variability across a vineyard, and as a result the yield
predictions are inaccurate and spatially coarse.

[Author listamended on 23 September 2014 after error in first online
publication on 11 August 2014: The following authors have been
added: Srinivasa Narasimhan, Robotics Institute, Carnegic Mellon
University.]
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= We also overcome the challenges distinguishing the

There is a gap between the methods available to predict
the yield in a vineyard and the needs of vineyard managers
to make informed decisions for their vineyard operations.
Using carefully designed illumination and a camera sys-
tem (see Figure 1) paired with novel algorithms that auto-
matically detect the fruit within the imagery, our method
can make dense predictions of harvest yield efficiently and
nondestructively. We overcome difficulties in imaging and
design our camera and illumination setup to optimize for
low motion blur, increased depth-of-focus, and low illumi-
nation power for fast-recycle times permitting high-frame
rates. This design maintains high image quality at high ve-
hicle velocities and enables deployment at large scales, fea-
tures overlooked in many existing visual yield estimation
studies. Our results demonstrate that we can automatically.
detect and_count grapes o forecast yield efficiently with
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grape berries from similarly colored leaves, in nonuniform
lighting, and variable scales due to variable berry size or
variable distance of the fruit from the camera. Our approach
can be distinguished from a number of existing studies
on the detection of grapes, which are based upon one of
three different types of visual cues of grape berries appear-
ance: either color (Diago et al., 2012; Dunn & Martin, 2004),
shape (Rabatel & Guizard, 2007), or texture (Grossetete etal.,
2012). Each of the three cues has advantages in certain con-
ditions and, all have some limitations in others. Color on
its own is not suitable for distinguishing green grapes on a
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background of green leaves. The grape shape can be diffi-
cult to identify in cluttered images with leaves and other
spurious contours. Grape texture can be less distinguishing
under certain illumination conditions.

We take a different approach. Rather than focusing on
a single cue, we develop a robust and versatile algorithm
to detect grape berries under a variety of conditions by
exploiting all three main visual cues that grape berries have.
Our approach is to detect candidate hypotheses of where
grapes may be located in images using a shape transform,
and then classify these candidate locations using texture and
color descriptions within a robust classification framework
that exploits all the visual cues.

We develop a model that relates image measurements
to yield and optimize the model for two key goals:

1. accurate estimation of the spatial distribution of yield,
2. accurate estimation of the overall yield.
WN’W

Preliminary results of our approach were reported
in Nuske, Achar, Bates, Narasimhan, & Singh (2011) and
Nuske, Gupta, Narasihman, & Singh (2012). We extend our
prior work in the following ways:

© Present a study of three different visual texture descrip-
tions and evaluate each on a variety of datasets (Sections
3.2and 5.3.2).

" o Introduce a novel algorithm for berry keypoint detection
that is invariant to berry size (Section 3.1.2).

° Expand our model relating image measurements to yield
predictions and demonstrate how to optimize for accu-
racy (Section 4).

° Report on field experiments now spanning four growing-

seasons of multiple varieties and growing systems, total-
ing tens of acres of vines, all validated with true yield
measurements (Section 5).

The experimental results are the first visual vineyard
yield estimation results that are collected over hundreds
of vines and also encompassing multiple growing seasons.
Thisisasubstantially larger scale than other existing work—
by comparison, the next largest study in terms of dataset
size was a study using a static camera of 10 vines (Diago
etal., 2012). Their study artificially increased the size of the
dataset by defruiting vines sequentially, which increases
the distribution of yields but does not capture the true vari-
ance in leaf and vine occlusions and cluster-to-cluster oc-
clusions. Our system stands apart from existing approaches
in the complete design that solves all of the true imaging
and visual detection challenges. Our method is also the first
to present a way to eliminate the double-counting prob-
lem from overlapping imagery and also the challenge of
geometrically referencing the measurements by estimating
camera position along the row. Unlike other work, our ex-

)

periments are conducted from a moving vehicle in a com-

" pletely un-isolated fashion such that we replicate all issues
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that would be faced by a real deployment. No other study
so far has evaluated all the challenges and variables that
must be considered in a rigorous study, including variance
in visual detection performance, differences in berry-size,
detection of green juvenile berries, the variable distance of
the camera to the fruit zone, estimating location along the
vineyard rows, and the problems of leaf/vine occlusion and
cluster-on-cluster occlusion.

2. RELATED WORK

Viticultural studies (Clingeleffer, Dunn, Krstic, & Martin,
2001) have revealed that current industry practices to fore-
cast yield are inaccurate because of sampling approaches
that tend to adjust toward historical yields and include sub-
jective inputs. The calculation of final cluster weight from
weights at véraison (i.e., onset of color development) uses
fixed multipliers from historic measurements (Wolpert &
Vilas, 1992). The multipliers are biased toward healthier
vines, thus discriminating against missing or weak vines,
and multipliers for cluster weights vary widely by vine-
yard, season, and variety. In general, the approaches have
required manual samples of mean berry size, mean cluster
count, or mean cluster size (Serrano, Roussel, Gontier, Du-
fourcq, 2005), or a combination of the three, and then an
extrapolation to yield across a vineyard block.

Sensor-based technologies using trellis tension mon-
itors, multispectral sensors, ‘terahertz-wave imaging, and
visible-light image processing have all been proposed for
yield estimation in vineyards. A dynamic yield estimation
system based on trellis tension monitors has been demon-
strated (Blom & Tarara, 2009), but it requires a permanent
infrastructure to be installed. Further, variation in yield is
not the only cause of variations in trellis tension. Ambient
temperature and vine size also affect trellis tension, resulting
in.a loss of accuracy when relating tension to yield. Infor-
mation obtained from multispectral images has been used
to forecast yields with good results, but it is limited to vine-
yards with uniformity requirements (Martinez-Casasnovas
& Bordes, 2005). Related multispectral imagine work has
been applied to detecting almonds with a combination from
RGB and ir images (Hung, Nieto, Taylor, Underwood, &
Sukkarieh, 2013a). A proof of concept study by Federici,
Wample, Rodriguez, & Mukherjee (2009) has shown that ter-
ahertz imaging can detect the curved surfaces of grapes, and
it also has the potential to detect through an occluding thin
canopy. The challenge for this approach is to achieve fast
scan rates to be able to deploy the scanner on a mobile plat-
form while also having sufficient wavelength/resolution to
both detect as well as penetrate.

Conventional RGB camera imagery has been proposed
in a number of works as a means for fruit detection and
yield estimation. Jimenez et al. (Hung, Underwood, Nieto,
& Sukkarieh, 2000) provide a summary of fruit detection
work. Singh et al. (2010), Zhou, Damerow, Sun, and Blanke
(2012), Hung, Underwood, Nieto, & Sukkarieh (2013b), and



840 - Journal of Field Robotics—2014

Tabb, Peterson, and Park (2006) present methods for de-
tecting and classifying fruit pixels in imagery collected
in apple orchards. Yang, Dickinson, Wu, and Lang (2007)
demonstrated a similar approach to recognize tomatoes
for harvesting. A method presented by Berenstein, Shahar,
Shapiro, and Edan (2010) used a combination of color and
edge features for a coarse estimate of where grape clusters
and leaves reside in the images for the purpose of precision
spraying. A new method that uses 3D image reconstruc-
tions for fruit, leaf, and stem detection, demonstrated by
Dey, Mummert, and Sukthankar (2012), could classify fruit,
leaves, and shoots based on 3D reconstructions generated
from image sequences, which, unlike our work, is sensitive
to slight wind while imaging.

The most closely related works to ours in vineyard yield
estimation with image analysis can be divided by which
type of visual feature is used to identify the grapes within
images: color, shape, or texture.

Color discrimination has been demonstration by Dunn
& Martin (2004). This approach was attempted on Shiraz
post-véraison (red-grapes with full color development) in
short row segments. A similar color-based method that
detects fruit close to harvest after the onset of color-
developmentis presented by Diago etal. (2012) and Marden,
Liu, & Whitty (2013). These simple color-based methods
are not applicable for the majority of real-world examples
where the fruit appears over a background of similarly col-
ored leaves, as is the case in green grape varieties and in
all varieties before véraison. The contour and shape of the
berry is another method used to detect the fruit (Rabatel
& Guizard, 2007). The contour is more broadly applicable
to detect green grapes on green leaves, although partially
visible grapes and cluttered images filled with a variety of
contours on leaves and stems make it difficult to completely
distinguish the grapes using contour and shape alone. The
visual texture on the surface of the grape, especially when
imaged with an illumination source, is also a viable cue
for detection as exploited by Grossetete et al. (2012), who
demonstrate a hand-held device that can be used to mea-
sure the size of isolated clusters. Similar approaches detect
the shading on apples (Wang, Nuske, Bergerman, & Singh,
2012) and oranges (Swanson et al., 2010). All three types of
cues—color, shape, or texture—have seen some success in
detecting grapes, although none is convincing as a sole cue
for detecting the fruit. In our work, we demonstrate how to
exploit all three of these cues to create a strong classification
algorithm that separates berries from leaves and surpasses
the ability that can be achieved with one of these visual cues
alone.

Finally, in performing a comparison of our work to
all prior visual yield estimation studies, the most signifi-
cant differences are in terms of the scale of deployment and
also rigorous evaluation of all real-world considerations.
The only other works performed in which experiments in-
cluded measurements evaluated against total vine yield are

Diago et al. (2012) and Dunn & Martin (2004). These exam-
ples used limited sets of vines in their experimentation—10
vines and 1 vine, respectively. Both of these examples used
defruiting to artificially increase the size of the datasets,
which caused their experimental dataset to not be represen-
tative of the true variance in vine occlusions and cluster-to-
cluster occlusions. Also, they did not consider individual
berries, they only considered raw pixel count, which is sen-
sitive to the berry size, the distance from the vine, the focal
length, image resolution, as well as berry count (the desired
measurement). Also, they used a white sheet or white wall
backdrop to block out background disruptions. Further, to
draw more differences, our work is unique in that it is a
system that can be deployed from a moving vehicle though
the use of automatic image registration to deal with double
counting or undercounting of fruit. We also consider de-
tection of green juvenile fruit on a green leaf background.
There are other works that do look at detecting green berries
among green leaves, such as Grossetete et al. (2012) and Ra-
batel & Guizard (2007), but their experiments are restricted
to a small set of isolated clusters and do not evaluate to-
tal vine yield. Our work is the first system and study of
all these real-world considerations, and evaluation is per-
formed over hundreds of vines and four growing seasons.

3. BERRY DETECTION

We deploy a sideways-facing camera on a small vineyard
utility vehicle; see an illustration in Figure 6. The images
capture the vines and are processed with our algorithm to
detect and estimate the crop yield.

Yield in a vineyard is a combination of the following
crop components: the number of clusters, the number of
berries per cluster, and the berry weight. Given the vari-
ance in yield of a set of vines, this variance can be broken
down into the three yield components as follows (Clingel-
effer et al., 2001):

1. Variance in number of clusters per vine—contributes ap-
proximately 60% of the total yield variance.

2. Variance in number of berries per cluster—contributes
approximately 30% of the total yield variance.

3. Variance in berry size—contributes approximately 10%
of the total yield variance.

These three yield components combine to describe all
100% of variance in harvest yield. Current practice is to take
samples of each of these components to compute an average
and compute the final yield. We take an approach to estimate
the first two of these items together in one measurement—
that of the number of berries per vine. The reason for this is
that it is difficult, especially late in the season, to delineate
the boundaries of clusters within images. However, it is
possible to count the total number of berries seen, hence
combining the two components—number of clusters per

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Our yield estimation process is divided into three facets: detector-calibration to the left, berry-detection shown in the
center, and visibility-calibration to the right. The first facet is detector calibration, which uses a set of training images (we use a set
of 10 images), where grape locations are manually marked. The training images are processed to find grape keypoints (Section 3.1),
features are extracted at these keypoints (Section 3.2), and features are labeled as grape or nongrape features based on their
proximity to manually marked locations. The labeled feature-descriptors are then stored in a randomized KD-forest. Detection
performance is then characterized using the training set; this allows for the identification of the optimal voting ratio (Section 4.2)
and also the computation of a detection calibration function to account for trends in detection performance (Section 4.2.1). After
training, the core part of our approach is berry detection. Here, grape keypoints are found in each image, and then features are
extracted at the keypoints and classified as grape and nongrape using the randomized KD-forest with the optimal voting ratio
[Eq. (1)]. After detections are computed, the output is corrected using the function in Eq. (10) to estimate visible fruit. The final
part of our process is visibility calibration, which uses yield data (either from prior harvest or sparse in-season samples) to forma
calibration function [Eq. (17)] to estimate total yield from our dense image measurements.

-

vine and berries per cluster—into one measurement: berries
per vine.

Our approach does not attempt to measure berry
weight. However, we account for 90% of the harvest yield
variation with berries per vine (Clingeleffer et al., 2001).
Furthermore, instead of taking a small sample and extrap-
olating, we aim to estimate nondestructively the specific
yield at high resolution across the entire vineyard. Hence,
we will not introduce sampling errors into the process.

Journal of Field Robotics DOI 10.1002/rob

The overall process is presented in Figure 2, which is
splitinto three phases: berry-detection, detector-calibration,
and visibility-calibration.

Our algorithm, as first proposed in Nuske et al. (2011)
and expanded here, is split into the following stages:

(1) Detect potential berry locations (Section 3.1).
(2) Classifyand group the potential locations that have sim-
ilar appearance to grape berries (Section 3.2).



842 - Journal of Field Robotics—2014

3.1. Detecting Image Keypoints—Potential Berry
Locations

The first step of our algorithm is to find image keypoints that
are potential grape berry locations; see Figure 3(b). These
keypoints will later be classified as either berry or not-berry.

There are two reasons why we detect keypoints. The
first is to identify distinct grape-berries, which is impor-
tant to extract measurements that are invariant to the stage
of the berry development. Other work, such as Dunn &
Martin (2004) and Diago et al. (2012), detect grape pixels
only. However, the number of pixels that belong to fruit
will change as the grapes get larger, and therefore the mea-
surements will not be invariant to berry development. The
second reason is to reduce computation by only considering
a set of keypoints; this reduces the amount of the image that
is subsequently processed.

We present two keypoint detection algorithms. The first
is a radial symmetry algorithm [introduced by Loy & Zelin-
sky (2003)] that uses the circular shape of the berry as a cue
for detection. The second is a novel maximal point detection
algorithm that searches for the maximal point of shading in
the center of grapes that have been illuminated by a flash.
The two algorithms are introduced in the following two
subsections and evaluated later in Section 5.3.1.

3.1.1.

One approach we use is to search for points that have peaks
in a radial symmetry transform from Loy & Zelinsky (2003).
The radial symmetry transform requires us to know the
radii of the berries as seen in the image ahead of time. The
_ berry radii (in pixels) are dependent on the focal length
of the camera, the actual berry size, and the distance from
the camera. The focal length is kept fixed in our tests and
the vehicle maintains a relatively constant distance from
the vines. There is still variation in the radius in which the
berries appear in the image from differing berry sizes and
also some variation in location within the vine. We account
for this variation by searching for radially symmetric points
over a range of possible radii, finding points that exhibit the
most radial symmetry.

Radial Symmetry Transform

3.1.2.

We have developed an alternative keypoint detection algo-
rithm that searches for peaks in intensity corresponding to
grape centers. These peaks are found by finding local max-
ima in three-by-three kernels, and the peaks are validated
by an iterative growing procedure that identifies peaks with
symmetrical shading created by a flash. We continue in this
section to describe this procedure in more detail.

Lighting upon grapes is controlled, as flashes are po-
sitioned parallel to the camera’s optical axis to illuminate
the grapes (discussed in Section 5.1). This leads to grapes
that have a strong specular reflectance at the center of the

Invariant Maximal Detector

() Group Neighboring Berries

Figure 3. Example images showing the functioning of our vi-
sual berry detection algorithm. Input image is seen in (a). Key-
points, shown in (b), are the potential berry locations. In (c),
points marked in blue have been classified as having an ap-
pearance similar to a berry, and in (d) berries that neighbor
other berries are clustered together.

Journal of Field Robotics DOI 10.1002/rob
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(b)

(d)

Figure 4. Examples demonstrating the invariant maximal initial keypoint detector. Part (a) demonstrates the seeded growth into
regions of decreasing intensity over many iterations. Parts (b), (c), and (d) show the input image, the initial maximal points, and
the final keypoints that pass the seeded growing algorithm, respectively.

berry. From this point of specular reflectance, pixel intensity
decreases steadily toward the edges of the grape. If we can
find this point of specular reflectance, we can find a set of
keypoints that are potential berries.

There are other algorithms in the literature that detect
the shading on fruit produced by a flash, such as Grossetete
et al. (2012), Swanson et al. (2010), and our previous work
(Wang et al., 2012). However, these approaches do not con-
sider fruit of substantially different sizes, and they would
require some reconfiguration to function on fruit of different
size, or images with different resolution.

We present an approach that does not need a size pa-
rameter as input and can function on berries of substantially
different sizes, from 10 pixels in diameter up to well over
100 pixels in diameter.

The identification of potential grape centers in images
is as follows. Image noise is first eliminated through a Gaus-
sian pyramid downsampling operation. Then, an initial set
of local regional max within their immediate neighborhood
is identified; see Figure 4(c).

Filtering of this set is then achieved through an iter-
ative region growing method, operating on each regional
maxima. Regional maxima serve as the seed points to region
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growing. Through an iterative process, shown in Figure 4,
these seed points are grown and evaluated for symmetry
and decreasing intensity profile.

Ateachiteration, pixels of decreasing intensity adjacent
to the regional max are included in the region. This adds a
ring of pixels darker than the maxima but brighter than a
fraction of the maxima intensity (we use 85% as a threshold
for each ring). Once the new “ring” of darker pixels has
finished growing, a new iteration begins by growing a new
ring of pixels, which includes darker pixels than the previ-
ous ring but brighter than a fraction of the previous ring’s
intensity. Each image point can only belong to one grown
region. This ensures that after an initial region is grown, an
adjacent region cannot contain the same pixels, eliminating
overlapping maxima. This process repeats until a set num-
ber of rings has been added (three intensity levels) or one
of the following shape criteria has failed:

° First, the region’s centroid should be within a range of
the region’s maxima point.

° Second, the shape of the region should not become elon-
gated.
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A region that has three levels of decreasing intensity
and passes these two shape criteria is considered a possible
grape keypoint. Finally, a mask image of pixels that belong
to regions is maintained, such that each image point can
only belong to one grown region. This ensures that after an
initial region is grown, an adjacent region cannot contain
the same pixels, eliminating overlapping maxima.

3.2. Classifying Appearance of Candidate
Keypoints as Berry/Not-berry

The next stage in our algorithm is to classify the detected
keypoints into grapes or not-grapes; see Figure 3(c). We take
an image patch around each detected center and compute a
combination of both color and texture features from that im-
age patch. For the color features, we form a six-dimensional
vector from the three RGB channels and the three L*a*b
color channels.

Our initial work in Nuske et al. (2011) presented the use
of Gabor filters to classify the grape’s texture. In this paper,
we evaluate three different texture features from three broad
classes of features, and we will study the applicability of
each type of feature to a set of different imaging conditions.
In particular, we choose three of the broad categories:

1. Filter banks: used as far back as the 1980s (Laws, 1980)
in image texture classification tasks. We use Gabor filters
with four scales and six orientations and combine to form
a 24-dimensional feature vector, as per the original work
(Nuske et al., 2011).

2. Local texture features: proposed in the late 1990s, they
describe histograms of gradients (HoG), or similar vari-
ations, in a support region around an image location.
Here, we use a SIFT descriptor (Lowe, 2004) computed
in a support region centered at our candidate centers.
Since we are using our specific berry keypoint detec-
tion algorithms as presented in the previous section, we
do not use the SIFT keypoint detection step. The raw
descriptors total 128 dimensions, which we decimate
into its most discriminative axes using PCA into a 32-
dimensional vector.

3. Binary relations: a recent class of image features that
compile sets of pairwise binary intensity relations be-
tween pixels or regions surrounding an image location.
We use the Fast Retinal Descriptor (FREAK) (Alahi, Or-
tiz, & Vandergheynst, 2012), which is designed to mimic
the human retinal construction and is noted to achieve
higher performance rates than other recent binary fea-
tures [BRIEF (Calonder, Lepetit, Strecha, & Fua, 2010)].
Similar to the process used for SIFT descriptors, we per-
form dimensionality reduction from the 200 raw dimen-
sions into its most discriminative axes using PCA into a
32-dimensional vector.

We study these three types of features in the context
of three different illumination conditions with which we
have collected image data in vineyards: natural illumina-
tion, flash illumination, and cross-polarized flash illumina-
tion. Results of the study are presented in Section 5.

We concatenate the color and texture features to form
a set of candidate image features, I, computed at the berry
keypoint candidates. To classify the candidate features, we
use an a priori constructed randomized KD-forest (Lepetit,
Lagger, & Fua, 2005) from a set of training samples, T, ex-
tracted from a subset of images. We manually define berry
centers in the training images that correspond to the posi-
tive examples of the appearance of berries, T,. For negative
samples, T, we compute features at our detected keypoints
that do not align with a manually defined berry center.

Then for each candidate feature [ (i) we extract a set
of nearest nodes T (i), from the randomized KD-forest. We
then vote on the class of each interest point by comput-
ing a ratio of the number of positively labeled features,

T.= [”.”:l," , to the total size of the candidate feature set.
We define a threshold, t,, applied to the voting ratio, which
is adjusted to control how conservative or liberal the clas-
sification is. Our resulting set of classified berries is b, € I,

where

T >rz,. (1)

We group these detected berries into clusters less than
a threshold in distance from each other. We remove clusters
of detections that are smaller than an area threshold, which
removes spurious detections; see Figure 3(d).

3.3. Combining Berry Detections in Image
Sequences

Since we are collecting data from a moving platform and
wish to produce yield estimates that are assigned to specific
locations in the vineyard, it is not sufficient merely to be
able to detect grapes in an image. First, we need to have
state information for the data collection vehicle to be able
to back-project the grape detections from each image to a
position along the vineyard row. Second, we need to use
the registered grape locations to avoid double counting of
grapes between consecutive images.

To gain state estimation for the data collection vehicle,
we use a second camera facing backward from the vehi-
cle angled at approximately 45 down toward the ground
for positioning. The downward-facing camera is a stereo
pair and we use a visual odometry algorithm (Kitt, Geiger,
& Lategahn, 2010) to track the position of the vehicle as it
moves along the row. With state information data for the ve-
hicle, individual grapes can be registered to locations on the
local fruit wall. The problem is that there can be significant
overlap between consecutive images. This overlap needs
to be accounted for during grape registration to prevent a
single grape from being counted multiple times.

Journal of Field Robotics DOI 10.1002/rob



The process to identify individual grapes is as follows.
First, the detections from each image from a vineyard row
are back-projected onto the local fruit wall. The entire length
of the row is then partitioned into short segments (around
0.5 m in length). A segment that contains projected grape
detections from more than one image is a region in which
camera views overlapped. The detections from the image
with the most detections lying in the segment are retained,
and detections in the segment from the other images are
discarded. This heuristic is used to choose the image where
the effect of occlusions was minimum. Taking the maximum
image measurement rather than attempting to merge all im-
age measurements together avoids the issue of attempting
to do fine registration while fruit is moving from wind or the
vehicle pulling at the vine. Each segment now has a visible
berry count associated with it, and this can be aggregated
over rows, vines, or sets of vines.

4. RELATING IMAGE-BASED MEASUREMENTS TO
YIELD PREDICTIONS

The previous section describes how to detect berries within
images. This section describes how to take these image mea-
surements and form an estimate of fruit yield; Figure 2 ex-
plains the procedure.

Viticulturists have long studied the process of predict-
ing the size of the harvest yield, and they have developed
models of the various yield components (Clingeleffer et al.,
2001). In the most basic form, the weight of the harvest (W)
can be expressed as a product of the number of berries (N,)
and the mean weight of the berries (W,),

Wh = I.Vh WI:- (2)

Our approach to predict the yield at harvest time is fo-
cused on measuring the number of berries (¥,). The number
of berries is stable shortly after berry set (once the period
known as shatter is passed) and it accounts for 90% of the
variation in yield (Clingeleffer et al., 2001); varying berry
weight is responsible for the remaining 10%. Our berry
count formsa part of a yield forecasting function, f(-), which
outputs an estimate (N,) of the actual berry count:

N, = f(N}). )]

4.1. Visible Berries and Estimating Self-occlusions

In our prior work (Nuske et al., 2011) we used the visible
berry count as a prediction of the cluster size, assuming the
detected berry count is proportional to the total berry count:

Ny, o N, @

In the Results section (Section 5.4), we study the visible
berry count in controlled experiments, and also, in an at-
tempt to improve the measurement of the occluded berries
in a cluster, we propose two potential modifications.
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The first alternative measurement we propose is to take
the convex hull formed by all the visible berries in the clus-
ter. Assuming the cluster has uniform density and an aver-
age thickness of the grape cluster to be D, we multiply the
area A to this fixed cluster depth, and we normalize with
the average berry radius R,

A .
N, n X DR_IP" . (5)

The second alternative is to predict the size of a cluster
using a 3D ellipsoid model. A grape cluster’s volume can be
approximated with an ellipsoid cutting off the image plane
as an ellipse. We find the best-fit ellipse for the berry center
locations with same normalized second central moments.
Given the semiaxes of the ellipse in pixels R; and R, with
Ry = R,, the volume of the corresponding ellipsoid would
be proportional to the volume occupied by the berries (B,) in
the cluster. Using the average berry radius (R,) of the cluster,
we can calculate the total number of berries occupied by the
cluster:

4 5
chgﬂ;ﬁrz'.
(4 )

N, =V. gﬂ'l's . (6)

We study these three approaches to measuring grape

cluster size in controlled laboratory tests in the Results sec- .

tion (Section 5.4).

4,2. Optimizing for Yield Estimate Accuracy

Ultimately, the goals are to achieve accurate yield estimates.
In this section, we isolate the metrics of interest and present
a means to optimize our algorithm to improve spatial yield
estimation accuracy.

There are two requisites for N, in terms of accuracy:

1. Accurate estimate of overall yield. Minimizing the error
term: e,.

2. Accurate estimate of spatial yield. Minimizing the error
term: e,.

S oo

(. Rl () -

T (N}

Z(Nj — N

“ = N, — s(NDE" @

where Nj is the number of berries on the ith vine.

We will revisit details regarding e, and e, later, but we
begin by introducing a function f that captures the relation-
ship between the detected fruit in the camera image N} to
the total fruit N,,.
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4.2.1.

There are errors in the visual detection process that must
be modeled. In Nuske et al. (2011), the performance of the
detection algorithm was analyzed to find that the algorithm
does not detect some berries visible to the camera, and to a
lesser extent there are some occasions when the algorithm
falsely reports a berry where there was not one.

We form a measurement of detection using a sample
of images where the berry centers have been manually
marked, enabling us to measure three metrics: true posi-
tives (TP)—the number of berries detected that were actual
berries; false positives (FP)—the number of false berry de-
tections; and false negatives (FN)—the number of berries
visible in the image that were not detected. Our measure,
k,, exactly defines the rate of visible berries that are detected
by the system,

Detection-Calibration

TP
TN ®)
We take k,;, which is the true positive rate, together
with the false positives (FP) expressed as a number per
linear length of vineyard, and it can be applied to the level

of detected fruit N to estimate the amount of visible fruit:

Nj = fuN{, %, FP) =

b Kds

W —FR) (10)
K.

Importantly, unlike «,, the number of false positives
is decoupled from the total number of visible fruit. This
decoupled behavior was discovered empirically through
our analysis and readily understood and explained, since

" vines with little or no fruit will induce a similar amount of
false positives as vines with larger amounts of fruit.

We use this function to correct for variable detection
performance arising from the differing appearance of the
vines and variable imaging and lighting configurations.

Referring back to our error, we wish to minimize, ¢,,
in Eq. (8), which is in fact directly related to the correlation
measure r> = 1 — ¢,; the portion of the error term we care
most about is the squared error term of the predicted yield
compared to the true yield: E(I\AI,‘, — N))~

Our model of detected to visible to total fruit is a linear
system, and the terms can all be calibrated in closed form re-
gression. Assuming there is sufficiently accurate calibration
data, the squared error term will only be nonzero under the
presence of some unmodeled variance in our model. It is
expected that there is some nonzero variance in our occlu-
sion term «,,, where we use the notation for the the standard
deviation of this term as o, _, which reforms the equation as

N

N,-, = f,(NA,‘i,K s Oy, ) = Tg(o’)

(11)

where g() is a zero-mean Gaussian function. At present, in
the absence of a known method to estimate this variance,
o (k,), we leave this as an unmodeled error.

However, there is another source of variance, which is
the deviation within our detection function o (f,(-)). This
variance in the detection function is possible to minimize,
which in turn will optimize ¢.. Using hand-labeled training
images to analyze our berry detection system, we find that
there are two different behaviors in the detection function,
one in which the mean of the true positive berries output by
our system is linearly related to the visible fruit, and another
in which we find false positives to be modeled as a variable
(B) unrelated to the visible fruit:

TP = N,[a +g(o. )], (12)

FP = B[1+g(o))]. (13)

Thus, we can rewrite our relationship to visible fruit as
follows:
. N/
Nj= — ; (14)
a+g(o,)+ Bl + g(oy)]

g(o,) and g(o ;) are the two sources of variance in the detec-
tion function, and in a well-calibrated system they will be
directly proportional to the squared error term:

u(N;)g(o.) | m(EP)g(ay)

P R

We have now identified the terms responsible for spa-
tial accuracy, and we can develop an optimization strategy.
The key variable in our berry classification algorithm is the
threshold on the randomized KD-forest voting ratio, 7, from
Eq. (1). We use this as the variable to optimize against com-
puting the minimum of our error term:

CuNise) | wEP)g(e)
A(TP) )

The error term and its components are graphed to-
gether in Figure 5. The r, parameter is adjusted to balance
the variance in the false positives in the system and the vari-
ance in true positives, and the optimal point is captured by
the error term. The minimal point on the error term curve
is used to ultimately reflect the maximal R* value against
a vineyard dataset. Later in the Results section, this opti-
mization is studied for different texture feature descriptors
(Section 5.5).

(N - N))*

arg min (16)

4.2.2. Visibility Calibration
Once a corrected estimate of visible fruit is derived, we form
a second function, f,(), relating the visible estimate of fruit
to the total fruit as follows:

N, = f(N,,x,)=—N_. 17)

F=

Journal of Field Robotics DOI 10.1002/rob



0.2:[ " "A=normalized(c )
" /\
01| B=normallzed(a“) /J N
~6— A+B | = \\\
(1 et e e e e e
0 20 40 60 80 100

T Randomized-KD-Forest Voting Ratio

(a) Detection metrics

Error

Nuske et al.: Automated Visual Yield Estimation « 847

. _e_normallzed(ou) + nomlallzed(cu)
N/ g2 0.7
0.8 0.65
c
2
0.6 0.6 E
[3)
T
.
o
0.4 K 055 O
’.' N
* an
0.2 0.5
*
i«
0 v v - 0.45
0 5 10 20 30 40 50 60 70 80 90 95

T, Randomized-KD-Forest Voting Ratio

(b) Optimize SIFT against R*

Figure 5. Spatial yield accuracy, R? can be maximized by minimizing the detection system’s error metric. Specifically, the
randomized KD-forest voting threshold 7, is optimized against normalized o,, and normalized o from the error term from Eq. (16).

This relationship requires yield data to form an estimate
of visibility; «,,. As discussed in detail in Nuske et al. (2012),
the yield data can be collected from previous harvest data
or from in-season samples. Although f,() varies by dataset
and imaging type, we find the visibility function f.() is
consistent over seasons for a particular vineyard.

Together the two functions f,() and f,() form the two
key relationships—f{rom image measurement to visible fruit
and from visible fruit to yield prediction; for an overview
of the procedure, see Figure 2.

5. RESULTS

Experiments are conducted at four different vineyards over
four growing seasons, including the following varietals:
Traminette, Riesling, Flame Seedless, Chardonnay. In each
vineyard and season, the image-measurements are eval-
uated against carefully collected harvest yield measure-
ments. The yield estimation is studied for both spatial ac-
curacy and overall accuracy, and we demonstrate how to
optimize the algorithm to maximize spatial yield accuracy
and also to analyze the accuracy for different methods to
calibrate the relation between image measurements and
yield.

We analyze the berry detection algorithm over the
different grape varieties and illumination conditions, as-
sessing the performance of different texture feature de-
scriptions by quantifying which descriptor performs bet-
ter in which lighting condition and which generalizes the
best across datasets without the need for retraining and
tuning.
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5.1.

There are significant challenges in designing an imaging
system that adheres to a number of considerations, includ-
ing the lighting power, lighting distribution, and specular reflec-
tions from the vine'leaves, the depth-of-focus appropriate to
the vineyard fruiting-zone size plus the variable position of
the camera with respect to the fruiting zone, the frame-rate of
the camera with respect to desired operating velocity, motion
blur, which is related to the exposure duration, the vehicle
velocity, and vibrations from the engine and the terrain un-
dulations, the recycle time of the flashes, heat accumulation in
the flashes, position-estimation and image-registration, image-
resolution to enable detections of small grape berries early in
the season, and image-quality to enable detection of the fruit.

The camera is mounted about 0.9 and 1.5 m from the
fruiting zone, depending on the size of the fruiting zone for
the particular vineyard. Illumination is placed directly to
the side of the camera to reduce shadowing.

The most current equipment design was deployed to
collect data starting in 2013; see Figure 6. To image the fruit,
a 24MM F/2.8D AF NIKKOR lens is used in conjunction
with a Prosilica GE4000 camera, which are mounted facing
sideways on the vehicle viewing the fruit. Additionally, two
Einstein 640 mono flashlights are mounted on both sides of
the camera. The stereo camera used for visual odometry es-
timation is a PointGrey BumbleBee2 mounted to the vehicle
pointed down the row used within the visual odometry al-
gorithm to estimate the position of the vehicle along the row.
Both cameras are triggered by external pulses to maintain
synchronization. The images are captured at 5 Hz and the
vehicle is driven at 5.4 km/h, which as a rough comparison

Equipment Setup
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Figure 6. Photos of the equipment used to collect the 2013 datasets. Part (b) shows the Prosilica GE 4000 camera with a red-case
mounted in the middle of a vibration-damped mounting plate, attached to a custom reconfigurable aluminum frame with an
adjustable ball joint at the head. Beside the camera are the two Einstein 640 flash units with reflectors and a custom diffusion filter
attached. There is a Hokoyu UTM30LX laser scanner also seen mounted above the camera on the plate, however it is not used in
the experiments presented in this work; its placement is designed to measure the size of the vine’s canopy [see Grocholsky, Nuske,
Aasted, Achar, & Bates (2011)]. In (c) the Bumblebee2 stereo camera can be seen pointed along the direction of travel to be used in
a visual odometry algorithm to measure the position of the vehicle along the row.

to other vineyard vehicles is approximately the same speed
as a pesticide spraying tractor and faster than a machine
harvester.

In experiments before 2013, different cameras, camera
lenses, and illumination sources were used. In 2010, a Canon
SX200IS camera was used to image the fruit, and halogen
lamps were mounted facing sideways toward the fruit. In
2011 and 2012, we used a Nikon D300s camera to captureim-
ages of the grape fruit, and an AlienBees ARB800 ring flash
mounted around the camera lens to provide even lighting
to the scene. In 2011, a 24MM F/2.8D AF NIKKOR lens was
used in conjunction with the Nikon camera, whereas in 2012
a Nikon 18-55 mm £/3.5-5.6G ED I AF-S DX zoom lens was
used.

5.2. Datasets

The datasets analyzed consist of wine-grape varieties—
Traminette, Riesling, Chardonnay, and Petite Syrah—and a
table-grape variety called Flame Seedless. We demonstrate
our method at a variety of stages during the growing sea-
son, from just after the fruit begins setting right up until just
before harvest. Over this time span, the berries range from
one-tenth their final size to almost fully grown. See Table I
for details of the different datasets. See Figure 7 for image
examples from the different datasets.

In each of the datasets, we collect harvest weights
of the fruit to evaluate against our image measure-
ments.

Journal of Field Robotics DOI 10.1002/rob
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Tablel. Dataset location, time, and details.

Variety Location Date Days to harvest Trellis type Lighting No. Vines
Traminette Fredonia, NY Sep 2010 10 Vert. Shoot Pos. Day w/ lamp 98
Riesling Fredonia, NY Sep 2010 10 Vert. Shoot Pos. Day w/ lamp 128
Chardonnay Modesto, CA Jun 2011 90 Vert. Sprawl Night w/ flash 636
Chardonnay Modesto, CA Jun 2013 75 Vert. Sprawl Night w/ flash 24
Petite Syrah Galt, CA Jun 2013 75 Quad. w/ Vert. Shoot Night w/ flash 30
Pinot Noir Galt, CA Jun 2013 75 Quad. w/ Vert. Shoot Night w/ flash 32
Flame Seedless Delano, CA Jun 2011 40 Split-V Night w/ flash 88
Flame Seedless Delano, CA Jul 2012 1 Split-V Night w/ flash 88
Flame Seedless Delano, CA Jun 2013 7 Split-V Night w/ flash 88

5.2.1. Wine-grape Vineyards

The Chardonnay dataset was collected in Modesto, Cali-
fornia in a sprawling vineyard that has guide wires that are
lifted to tuck pendant shoots up such that it could be consid-
ered a semivertical shoot positioned vineyard. We collected
images on 636 vines on six rows of this vineyard. In 2011, the
images were collected just after the berries began to set at
12 weeks before harvest. At this stage, the berries are very
small, between 3 and 5 mm in diameter and one-tenth of
their final weight. In 2013, the images were collected sev-
eral weeks later in the relative growing season when the
berries were larger at 0.8 g.

The Petite Syrah and Pinot Noir datasets were collected
in Galt, California, both in a split quadrilateral trained cor-
don trellis system. The pruning practice and the trellis sys-
tem both promote vertical growth of the shoots up and over
top guide wires such that the canopy grows up and over
the wires in a curtain. The fruit is inainly located close to
the cordon below the wires. The camera position in this
vineyard must be underneath the canopy looking up at the
fruit-zone.

The Riesling and Traminette datasets were collected
from an approximately one-acre plot in Fredonia, New
York. We used four rows of Traminette vines and four
rows of Riesling varieties, consisting of 224 vines total. The
Traminette were positioned at 8 ft spacing and the Ries-
ling were positioned at 6 ft spacing, which totaled 450 m of
vines. Similarly to the Chardonnay vines sampled, the Ries-
ling and Traminette vines were vertical shoot positioned,
allowing fruit to be seen underneath the lifted vine canopy.

Basal leaf removal was performed for all of the
Chardonnay, Petite Syrah, Riesling, and Traminette vines
as per each vineyard’s standard operation. For all but the
Riesling dataset, the leaf removal was performed only on the
north side, and this is the side that was imaged. The practice
is commonly performed by vineyard owners to expose the
fruit to the sun to change the flavor characteristics of the
grapes (Bergqvist, Dokoozlian, & Ebisuda, 2001; Crippen Jr
& Morrison, 1986). Basal leaf removal also makes yield es-
timation feasible after fruit-set at the end of the growing
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season because the occluding canopy is removed from the
fruit-zone.

5.2.2. Table-grape Vineyards

The Flame Seedless datasets were collected over three
years—2011, 2012, and 2013—where each occasion con-
sisted of a dataset of 88 vines of a split-V gable vineyard,
in Delano, California. The vines are trained in a split sys-
tem in which each vine is trained into two cordons and the
shoots grow over a V-gable trellis such that the fruit hangs
in two distinct sections at an angle on each side of the row.
The canopy grows out over the V-gable trellis such that to
view the clusters, either the canopy must be trimmed back
(usually done close to harvest time to enable harvest crews
to access fruit) or a cane-lifting device [see Figure 1(b)] is re-
quired to reveal the fruit. As per convention in table-grape
cultivation, fruit-thinning, shoot-thinning, and leaf-pulling
are performed quite rigorously to promote separation of
the grape clusters from each other and from leaves. The re-
sult of this separation of the fruit is that once the exterior
canopy is removed or moved from between the camera and
the fruit, the cluster-to-cluster and vine occlusions are no-
ticeably less for this type of vineyard than the wine grape
varieties (which is reflected later in Figure 13).

5.3. Bernry Detection Performance

We evaluate the performance of our berry detection algo-
rithm by first analyzing the keypoint detection algorithms
and then studying the feature classification.

5.3.1. Evaluation of keypoint detection

We take both the radial-symmetry detection algorithm and
the invariant-maximal detection algorithm and evaluate
based on how many grape centers are detected by each
algorithm, as shown in Table IL. The table illustrates that the
two types of keypoint detection behave differently under
different conditions.
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Figure 7. Example images of the different varietals from our yield prediction experiments.

Notable discrepancies between detectors are seen in
the 2010 datasets collected in natural illumination. The
invariant-maximal detector does not perform well, due to
the lack of shading on the surface of the fruit. Also, the same
performance is registered in the Flame Seedless 2011 dataset
when a cross-polarized flash is utilized, also removing the
shading on the surface of the fruit.

In most of the 2013 datasets, the invariant-maximal de-
tector outperforms the radial-symmetry algorithm where
the flash produces a peak in the middle of the fruit and a

gradual decrease in intensity from the curved surface. The
exception is the Chardonnay dataset, where it is believed
that a pesticide spray applied just before imaging caused
a residue to be left on the surface of the fruit, causing a
reduction in the shading produced by the flash.

In general, the results indicate that multiple key-
point detection algorithms are necessary to achieve high
pérformance in multiple different conditions. Further, we
also note that the actual location of the keypoints differs
between algorithms and the location affects the feature

Journal of Field Robotics DOI 10.1002/rob
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Table Il. Keypoint detection.
Radial- Invariant-

symmetry maximal
Dataset (Recall) (Recall)
Riesling 2010 0.66 0.12
Traminette 2010 0.89 0.09
Chardonnay 2011 0.68 0.91
Chardonnay 2013 0.86 0.77
Flame Seedless 2011 0.89 0.30
Flame Seedless 2012 0.73 0.54
Flame Seedless 2013 0.81 0.85
Petite Syrah 2013 0.87 0.96
Pinot Noir 2013 0.75 091

descriptions. This was discovered since performance
dropped when training the randomized KD-forest with one
detector type and testing with the other keypoint detector

type.

5.3.2. Evaluation of feature classification

As mentioned earlier in Section 3.2, we presented a
set of three different texture feature descriptors that we
evaluate within our algorithm from three broad feature

types:

1. Filter banks: Gabor filters
2. Local texture descriptors: SIFT
3. Binary relations: FREAK

We evaluate their relative performance against each
other on a set of datasets collected in a variety of illumi-
nation conditions; natural illumination, flash illumination,
and cross-polarized flash illumination. We use training sets
of 20 random images from each of the three types of illu-
mination conditions and manually mark the grape berries
in each of the images for ground-truth. Points identified
by the algorithm as berries that are near our manually de-
fined ground-truth are considered true positives, and they
are false positives if they are not near any manually defined
berries. Figure 9 presents the true positive rates and false
positive rates through varying values for 7, (see Section 3.2)
from O to 1.

We see in Figure 9(a) that a bank of Gabor filters
performs substantially better than the SIFT and FREAK
features, with color-only having the second best perfor-
mance. This naturally illuminated dataset was collected
after vérason (onset of coloring), and even though this was
a green grape variety (Traminette), there was noticeable
yellowing of the fruit in comparison to the leaves, indicating
why the color features do well. The images are noticeably
less clear and noisy than the other types of illumination
conditions, and as expected the Gabor filter responses that

are placed to encompass each image patch are more robust
to these lower quality images.

In Figure 9(b) we see that FREAK features perform best
at classifying the berries under conventional flash illumi-
nation. We suspect the curved surface of the grape is high-
lighted by shading from the flash and is captured well in the
description of the binary intensity relations of FREAK. This
dataset was captured before vérason, and the fruit is much
more similar in color to the foliage on the vine. Therefore,
we see, as expected, that color alone does not perform well.

Figure 9(c) presents the classification performance with
the cross-polarized flash. This type of illumination will re-
move the glare from the flash, which reduces the glare from
the surface of leaves and also removes any glare and shading
from the grape surface. In this case, SIFT performs the best,
since the shading is not prominent on the grape surface. We
hypothesize that the gradient orientation histogram of SIFT
is suited to describing the curved contour of the grapes,
which is the key visible cue in the absence of shading or
distinguishing color.

Finally, we evaluate which descriptor generalizes the
best over different datasets and illumination conditions. We
test on a dataset using training data from the other datasets.
We find that SIFT is best at generalizing across conditions,
whereas the Gabor and FREAK descriptions are less able to
generalize. In this test, we did not use color in the features,
as we see here that color-only performs poorly, since color
varies a lot between datasets and illumination conditions.
This shows a contrast, as color was seen to be a valuable
cue when a classifier was trained and then utilized over the
same dataset. In conclusion, it is possible to operate under
new conditions without retraining the classifier, but color
should not be included in the feature description, and the
results indicate that SIFT is the texture descriptor that is best
at generalizing.

5.3.3. Timings of Berry Detection Algorithm

Evaluating our algorithm on an Intel i5-2500K Quad core
3.3 GHz CPU, with 16GiB of RAM, produces the timing
breakdown in Table III.

There has not been great effort into optimizing algo-
rithms for speed. In particular, the Gabor filters use an inef-
ficient implementation. However, the efficiency of the sys-
tem is currently appropriate for our existing deployments,
given that the time before harvest when the images were
captured is far greater than the time to process all images
in a dataset. Further effort into optimization of algorithms
could bring the system close to real-time performance.

5.4. Evaluating Visible Berries and Self-occlusion

First, we evaluate the occlusion of berries within a cluster by
the outer layer of clusters (k;) and study some approaches
to potentially improve the estimate of the number of hidden

Journal of Field Robotics DOI 10.1002/rob
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(i) Petite Syrah (j) Petite Syrah - Berry detections

Figure 8. Example images demonstrating berry detection in different varietals.
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Figure 9. Classification performance curves computed from various feature descriptor types evaluated on a set of different
illumination conditions. Natural illumination (a) causes grapes to be imaged with noise from uncontrolled lighting. Gabor filters
perform best in this setting, as they are not as responsive to local image noise. Under conventional flash illumination (b) intense
shading is seen upon the imaged grapes. The FREAK performs best with this shading on the grapes, which we hypothesize
is because the relative-intensity comparisons of FREAK are successful at describing the steady decrease in intensity across the
shaded grapes. Under cross-polarized illumination (c) grapes are free of noticeable shading. The exterior contour of the grape is
the most noticeable feature on these grapes, and the SIFT descriptor seems to be better than FREAK at describing the value of this
strong contour on the grape’s exterior. When comparing across datasets, SIFT is the most generalizable descriptor across imaging

conditions, as seen in (d).

berries. For this specific study, we use a controlled labora-
tory environment where we collected images individually
of 56 grape clusters. We use ripe clusters of the Thompson
Seedless variety. For each cluster, we collected several

Journal of Field Robotics DOI 10.1002/rob

images from different orientations, at a fixed distance, and
we collected a weight and a count of the number of berries.
In the laboratory dataset, we do not use our automatic de-
tection algorithm and instead hand-mark all berries visible
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Table lll. Berry-detection timings.

Algorithm step Timing (s)
Image load and preprocess 0.097
Keypoint detection-radial symmetry 0.65
Keypoint detection-invariant maximal 0.55
Feature extract-Gabor 6.42
Feature extract-FREAK 0.045
Feature extract-SIFT 1.09
Grape/nongrape classification 0.017
Group berries into clusters 0.22
Total-slowest (radial /Gabor) 74
Total-fastest (maximal/FREAK) 0.92

TablelV. Cluster model correlation to fruit weight (laboratory
dataset).

Mean-
squared

Measure-type R? correlation error

Total berry count 0.95 9.3%
(upper bound)

2D Visible berry count 0.88 15.4%
[Eq. (49)]

Ellipsoid 3D model 0.85 17%
[Eq. (6)]

Convex hull 3D model 0.92 13.7%
[Eq. (5)]

within the images to replicate a perfect detection algorithm
and remove any bias from errors in the detection algorithm
(k; and k,). Also, in the laboratory dataset there are no
biases from the vine (k,) or from other clusters (k) and
hence we can isolate and study the bias from self-occlusions
(ks).

Initially, we compare the total berry count (gathered
manually) of each cluster against its weight, Table IV. The
correlation score for total berry count to weightis R* = 0.95
with a mean-squared error from a least-squares fit of 9.3%.
We consider this an upper bound for the yield predictions,
as the best yield prediction we could achieve depends on
accurately knowing the berry count.

Next, we study different image measurements starting
with the visible berry count, and we present the results in
Table IV. The visible berry count correlates with R* = (.88,
which provides a mean-squared error of 15.4%; similar vis-
ible berry correlations have been found in Grossetete et al.
(2012). The error is just 6% greater than the total berry count,
and it indicates that a similar fraction of visible berries
is present for small clusters as with large. The ellipsoidal
model has a correlation score of R* = 0.88 and the lowest
mean-squared error of 17%. Even though the ellipsoidal
model attempts to predict the occluded berries behind the

Table V. Cluster model correlation to yield (vineyard
datasets).

Measure-type R* correlation

2D Visible berry count [Eq. (4)] 0.75
Ellipsoid 3D model [Eq. (6)] 0.61
Convex hull 3D model [Eq. (5)] 0.41

visible layer of berries, it correlates with a lower score than
the visible berry measure. The ellipsoidal model could be
less accurate because it violates one of our assumptions:
the clusters do not have uniform density, or the clusters are
not ellipsoidal, or the model could suffer from errors in the
designation of the cluster contour.

The final image measurement model we evaluate is
the convex hull in Table IV. The correlation measures at
R* = 0.92, which is the best of the three image measure-
ments we study. One possible reason for the high correlation
is because it encompasses the entire cluster contour. There-
fore, it includes a measure of the partially visible berries as
well as the completely visible berries, thus being more ac-
curate than visible berry count alone. Despite finding that
the contour area in the image is a more accurate measure
other than the visible berry count, we do not yet deploy this
measure outside the laboratory environment.

We evaluate our different cluster models in a vineyard.
Table V presents results from the Traminette dataset. In the
vineyard setting, several clusters are visible in each image
and we have yet to develop a technique for successfully seg-
menting one cluster from another—a requirement of the vol-
umetric ellipsoid and convex hull models. In practice, clus-
ters grow to touch one another and it is difficult—without
physically moving the clusters—to determine which berries
belong to which cluster. Hence, at present we have only been
able to demonstrate precise detection of individual berries,
regardless of to which cluster they belong, and therefore in
the following vineyard results we consider just the visible
berry count.

5.5. Spatial Accuracy—Berry Count Correlation to
Vine Yield

We compare our berry counts against actual harvest weights
collected from the Traminette, Riesling, Flames Seedless,
and Chardonnay datasets. First, we register images to vine
spaces, and then we assign berry count measurements to
each vine space. For the Traminette and Riesling datasets,
we manually defined the vine spaces in images, but in the
more recent Flame Seedless and Chardonnay datasets we
deployed the stereo camera to perform this process auto-
matically.

Once registered to specific vines, we compare our au-
tomated berry counts with the harvest crop weights (see

Journal of Field Robotics DOI 10.1002/rob
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Figure 10. Correlation between our detected berry count and harvest crop weights. The black lines show the one-sigma standard
deviation within the measurements, the red line represents a linear fit, and each of the blue data points represents the raw
measurement of a single vine. The caption below shows the R? correlation score. These graphs illustrate our method generatinga
nondestructive measurement at every vine, whereas in conventional practice very sparse destructive samples are taken.

Figure 10 for details). The figure shows the raw data points
and the distribution of measurements. Our automatically
generated berry counts produced a linear relationship with
actual harvest crop weights with correlation scores rang-
ing from R? = 0.6 to 0.73 depending on the dataset (see
Figure 10 for details). The R? correlation score quantifies
how much of the actual variance in yield our method can
estimate. Thus, we capture 60-75 % of the variance. Simi-
lar correlation scores to vine yield were achieved by Diago
et al. (2012), although it is difficult to do a direct compar-
ison because in that work the yield distribution was ar-
tificially induced by stages of defruiting, which reduces
the true variance in vine occlusions and cluster-to-cluster
occlusions. Furthermore, without considering individual
berries, the correlation scores will not hold once the berry
size changes since simple pixel count is used as an image
measurement.
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Our measurements achieve good spatial correlation,
first through the high precision of our detection algorithm,
which rarely counts false positives (Nuske et al., 2011), and
also because there is some consistency in occlusion level
across the vineyard. Further, increasing the correlation score
could come from possible improvements to the detection al-
gorithm and including a method to estimate the berries that
are not visible to the camera. The variance unexplained,
derived by simply subtracting 1 — R?, is around 25-40 %,
which could either be due to variance in our detection per-
formance (i.e., changes in the recall of the algorithm) or to
variance in the occlusions, caused by either cluster, self-
occlusions, or the vine.

Finally, we demonstrate how to optimize our system
for spatial yield accuracy. Section 4.2 identified the metric
and means to optimize the classification algorithm. Here
we evaluate this approach by configuring with the set of
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and normalized false positive (o) [Eq. (16)] to maximize resultant R* correlation from berry counts, which is the quantitative

measure of spatial yield accuracy.

different feature descriptors, and we optimize the key classi-
fication parameter, 7,. The variance in both the true positive
rate and the false positive level is dependent on 7,, and we
optimize over a small set of hand-labeled images (a set of 10
images for a given vineyard dataset) and then evaluate the
resultant R value against the harvest data; see Figure 11.

For the three types of feature descriptors, the graphs
identify that minimizing the error in Eq. (15) when con-
figuring the algorithm produces a similar peak in r*> when
correlating to harvest yield. For Gabor filters and FREAK
features, the optimal 7, value is between 40% and 50%, al-
though it is noticeable that the error metric is slightly shifted
from the r* peak, which equates to less than a 5% reduction
in spatial yield accuracy. For SIFT features, the 7, parame-
ter is optimal at 80%, indicating the SIFT feature space has
much different properties than FREAK and Gabor, and that
in the SIFT feature space the positive berries are in a tighter
cluster, but with negative features distributed sparsely but
evenly. Nevertheless, the graphs reveal that the optimiza-
tion strategy is adept and produces substantial increases in
spatial yield accuracy in excess of 20%.

5.6. Yield Estimate Accuracy—Berry Count
Calibrated to Harvest Yield

We have seen a linear correlation between our image berry
counts and harvest yield illustrating that our estimates cap-
ture most of the true spatial variance in yield. The next met-
ric to analyze is the accuracy of our system in estimating the
overall yield. The calibration procedure to relate the image
measurements to yield can be conducted in two different
fashions. Either harvest and image data from prior seasons
can be used, or destructive calibration samples could be col-
lected at the time of imaging. Using prior seasons harvest
data theoretically requires less human labor, since record-
ing total yield at the time of harvest is a standard process
in grape production, and further an entire sample of yield

from all vines can be collected. The negative aspects to us-
ing prior harvest seasons are that you need one full season
before you can establish a calibration for computing yield
predictions, and the consistency of calibrations from sea-
son to season needs to be established so that the integrity
and accuracy of the calibration are known. Using manual
samples collected at the time of imaging has the advan-
tage that a calibration can be established immediately and
that the calibration can be assured to be representative of
the current vineyard variety and training system. However,
the human labor involved restricts the size of the sample
set and, in turn, may adversely affect the accuracy of the
calibration.
~ Wepresent yield prediction results using calibration es-
tablished from prior harvest data. We use different feature
descriptors for different datasets, as per the earlier discov-
ery that different features work better under different con-
ditions. Gabor filters are used for the Riesling, Traminette,
and Flame Seedless datasets, and FREAK feature descrip-
tors are used for the Chardonnay and Petite Syrah datasets.
The same classification threshold is used throughout, al-
though we also demonstrate in Figure 12 that we correct
for the particular classification performance using Eq. (10).
Hence, a varying classification threshold can be compen-
sated for, except at the extreme high and low classification
thresholds which cause too much variance in classification
performance. We also find that for some datasets, some
keypoint-types and feature-types are not able to be com-
pensated with Eq. (10), meaning that a changing threshold
changes the fruit estimate. However, we repeat training for
all features and keypoint combinations and pick the combi-
nation that has the most stable fruit estimate and consensus
with fruit estimates of other types of features/keypoints.
The images for all datasets are processed otherwise in
the same manner, with only one difference being an illumi-
nation normalization applied to the 2013 images at prepro-
cessing to correct for the light attenuation at the peripheries
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Figure 12. Ilustration of how to correct for variations in berry detection performance due to variations in visual appearance or
imaging conditions. The ratio of raw detected fruit to total fruit (a) is corrected by Eq. (10) to compute visible fruit (b) and plotted
at different classification thresholds. The visible fruit is computed with measurements of berry detection accuracy computed from
a small set of labeled images. The visible fruit in comparison to detected fruit is stable, with most of the different classification
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than 50% of the maximum from Figure 11(b). The stability in estimated visible fruit in comparison to the instability of the raw
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shows the yield prediction error when using the detected or visible fruit ratio computed from prior years with image measurements

from the present year. The visible fruit estimate is stable even with substantial changes in the classification parameter [Eq. (10)].

Table VI.  Yield estimation accuracy—Flame Seedless 2013.

Table Vil.  Yield estimation accuracy—Chardonnay 2013.

Calibration source Yield predictionerror ~ Calibration source Chardonnay 2013
Flame Seedless 2011 6.48% Chardonnay 2011 —2.47%
Flame Seedless 2012 11.65%

Flame Seedless 2011 and 2012 9.07%

of the image. We compute the visible fruit using Eq. (10) and
then compute the visibility calibration function [Eq. (17)]
from datasets collected in prior years, using the mean berry
weight to compute an estimated total number of berries.
We then apply the calibration to the image berry counts
collected in 2013 and evaluate yield accuracy.

The Flame Seedless vineyard also has a consistent re-
lationship between subsequent years. However, the Flame
Seedless vineyard is grown in a substantially different man-
ner than the wine grape vineyards. The vines are trained
on a V-gable trellis and the shoots are thinned, the fruit
is thinned, and leaves are pulled from in front of clusters
such that there is far less occlusion from foliage and from
cluster-to-cluster occlusion than the wine grape vineyards.
This difference can be seen in the two sets of calibration lines
in Figure 13, one for a table-grape split-cordon V-trellis and
one for a wine grape single cordon. The yield prediction
error for the table-grape data is between 6% and 11.5% ac-
curacy from prior harvest data, and using all prior data to
calibrate 2013 image data to an error of 9.07%; see Table VL.

Table VII shows the application of visibility calibra-
tion from the Chardonnay 2011 dataset and applied to the
Chardonnay 2013 dataset, which achieves an accuracy of
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2.5%. This result demonstrates that destructive calibration
samples at the time of imaging may not be required, and
prior season calibration may be sufficient. Further, calibra-
tion taken from the Traminette or Petite Syrah vineyardsalso
achieves good accuracy on the Chardonnay 2013 dataset of
4% and 5%, respectively. However, calibration from Riesling
or Pinot Noir vineyards produces 17% and 29% error, which
webelieve is due to lower levels of vegetation in the Riesling
vineyard, and our hypothesis that the Pinot Noir vineyard
had a combination of less vegetation in the fruiting zone
and the system also detected a small percentage of grapes
on the other side of the split cordon. The conclusion is that
calibration must be site-specific to achieve high accuracy.
For the Chardonnay vineyard the accuracy is 2.5%, and in
the Flame Seedless vineyard the accuracy is 9% on average
when calibrated from prior years in the same vineyard.

6. LESSONS LEARNED

We draw a number of lessons from this work. One of the
most important is that consistent performance is required to
ensure that image-measurements stay well-related to yield.
To maintain consistent performance, both imaging and al-
gorithmic robustness is important. The illumination and
imaging configuration is vitally important, and operating
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hypothesis, that site-specific calibration must be collected.

at night is the most reliable way to control the imaging.
Through the development in this work, it became apparent
that the imaging and illumination design was a major chal-
lenge for practical and robust sensing. Careful engineering
is required to achieve the desired characteristics in the il-
lumination power, the depth-of-focus, the frame-rate, flash
recycle time, motion blur, and image quality. A naive ap-
proach to deploying a camera in a vineyard will simply
be unsuccessful. Position estimation and image registration
are also essential to maintain consistency, by accounting for
the vehicle’s motion along the vineyard rows and also the
variable distance of the camera from the fruit-wall. If bi-
ases exist in the position estimation and image registration,
the result will be an inaccurate relationship between image-
measurements and yield. Finally, we have seen that with
a few manually labeled images (we use sets of 10 labeled
images), it is possible to characterize detection performance
and configure the algorithm to increase the accuracy of the
yield estimates. While it does take time to manually label
images, this requires far less manual labor in comparison to
the alternative of collecting destructive yield samples.

In terms of what has been learned from the multiple
years, we reflect on the results presented in Nuske et al.
(2012), and we see that the calibration relationships for the
wine grapes aligned more accurately from 2010 to 2011,
when errors were 4-5 %. The 2013 predictions report an ac-
curacy of 3-11 % of total yield. The slight decrease in the
worst-case accuracy for 2013 could be due to a few reasons.

One may be the different intensity profile created by the
new flash setup in 2013. In 2010 and 2011, a more uniform
light source was used, whereas in 2013 the light was fo-
cused using reflectors to project the light forward for power
efficiency reasons. This causes a gradual decline in the light
toward the edge of the images, and a slight decrease in
the amount of berries detected toward the peripheries of
the image, which we do correct as best we can with inten-
sity normalization across the image. Changes in the camera
placement on the vehicle may introduce some unexpected
variations in the fruit occlusion and appearance variations
of both the fruit and foliage. Nevertheless, despite a change
in camera and flash and vine appearance, the yield predic-
tion accuracy is still within 6% on average. It is logical to
conclude that keeping the imaging position and configura-
tion consistent, there may be a further increase in the accu-
racy of yield predictions. We are also looking at methods to
preprocess images to automatically normalize the lighting
distributions between datasets and extend our approach to
automatically configure the fruit detection algorithms (Sec-
tion 4.2) to be more robust to dataset variations. Another
learned lesson is that the vine-trellis type and manage-
ment practices of the grower are also critical considerations.
For instance, for the vineyards studied in this work, the
trellis, the leaf-pulling, shoot/cluster thinning, and shoot
positioning varied between the wine-grape vines and table-
grape vines. These differences combined to affect the rela-
tionship between image-measurements and yield, although
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it was shown that the relationship is stable in the same
vineyard over several years. For example, the lower errors
recorded in the wine-grape vineyards are expected to be
due to more consistent visibility of the fruit zone and/or
more consistent berry detection performance in these vine-
yards. In the table-grape vineyards the fruit zone is much
larger, and due to the split vines, some of the fruit from
one side would grow close to fruit from the other side, and
there were challenges involved in positioning the camera
and configuring the algorithm to not incorrectly count fruit
from the other cordon.

7. CONCLUSION

The method presented in this paper demonstrates nonde-
structive yield estimation that can enable growers to per-
form management in a far more effective manner than was
previously possible. Unlike previous work in this area, we
demonstrate a complete system over several growing sea-
sons and tens of acres that can be deployed efficiently. We
address the key challenges relating to distinguishing the
berry appearance, the challenges in imaging, estimating the
position of the vehicle, and reducing variance in measure-
ment, all together providing an automated solution to large-
scale, high-resolution yield estimation.

The algorithm presented here exploits all visual cues of
grapes, namely shape, texture, and color, enabling a detec-
tion system applicable across many different varieties and
imaging conditions. While ideally there would be one par-
ticular visual texture-cue for all conditions, we discovered
that different texture-descriptors work well in different con-
ditions. While this poses a challenging question of which
descriptor to use within the algorithm, we have shown that
with a small amount of labeled data, it is possible to quan-
tify the classification performance of individual feature de-
scriptors at the training stage and identify the most optimal
descriptor. We also show how to tune the algorithm and
descriptor to maximize the accuracy of the resultant yield
estimates. In particular, we distilled the model relating im-
age measurements to yield down to the components that
directly affect yield accuracy, and we were able to show
that our theory results in substantial increases in accuracy.

We also attempted to improve the estimate of berries
within a cluster with a volumetric prediction of cluster size,
and we demonstrated a method that increases the accu-
racy of cluster-size estimates within a laboratory setting.
When applied to real-world data, the volumetric method
was found to decrease accuracy because grape clusters grow
alongside one another, which makes it difficult to discover
theboundary of neighboring clusters, leading to gross errors
in extrapolating cluster size. Therefore, a first-order model
that relates the visible berry count to yield is the most ac-
curate in practice. An interesting observation can be drawn
that humans are better at counting clusters per vine and
weighing individual clusters, whereas, conversely, it seems
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robotic sensing struggles to accurately count mature grape
clusters. Instead, it is easier to use robotic sensing to count
the number of berries on a vine, a measure that would not
be easy for a human to directly produce.

Finally, we identify stable calibration relationships for
vineyards that hold true from year to year within 10% pre-
diction of total yield. The results indicate that the system can
be efficiently deployed without new labor-intensive man-
ual calibration, given that a site-specific calibration has been
established in prior years.
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