Automated Visual Yield Estimation in Vineyards
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We present a vision system that automatically predicts yield in vineyards accurately and with high resolution.
Yield estimation traditionally requires tedious hand measurement, which is destructive, sparse in sampling,
and inaccurate. Our method is efficient, high-resolution, and it is the first such system evaluated in realistic
experimentation over several years and hundreds of vines spread over several acres of different vineyards.
Other existing research is limited to small test sets of 10 vines or less, or just isolated grape clusters, with tightly
controlled image acquisition and with artificially induced yield distributions. The system incorporates cameras
and illumination mounted on a vehicle driving through the vineyard. We process images by exploiting the three
prominent visual cues of texture, color, and shape into a strong classifier that detects berries even when they are
of similar color to the vine leaves. We introduce methods to maximize the spatial and the overall accuracy of the
yield estimates by optimizing the relationship between image measurements and yield. Our experimentation is
conducted over four growing seasons in several wine and table-grape vineyards. These are the first such results
from experimentation that is sufficiently sized for fair evaluation against true yield variation and real-world
imaging conditions from a moving vehicle. Analysis of the results demonstrates yield estimates that capture
up to 75% of spatial yield variance and with an average error between 3% and 11% of total yield. ¢ 2014 Wiley

Periodicals, Inc.

1. INTRODUCTION

Yield predictions in vineyards are important for managing
vines to optimize growth and eventual fruit quality. For
instance, if an overly large crop is forecast, fruit may be
removed during the season to achieve certain fruit quality
goals. This practice of crop thinning is much more effective
when based on an accurate yield estimate. Yield forecasts
also prepare a grower for the harvest operation, for shipping
their crop, storing their crop, and also selling their crop on
the market. Typical yield predictions are performed using
knowledge of historical yields and weather patterns along
with measurements manually taken in the field. The cur-
rent industry practice for predicting harvest yield is labor-
intensive, expensive, inaccurate, spatially sparse, destruc-
tive, and riddled with subjective inputs. Typically, the pro-
cess for yield prediction is for workers to sample a certain
percentage of the vineyard and extrapolate these measure-
ments to the entire vineyard. Agronomic studies have es-
tablished that large spatial variability in vineyards across
multiple countries and growing conditions exists (Taylor,
Tisseyre, Bramley, Reid, & Stafford, 2005). However, the
sample size is often too small in comparison to the spa-
tial variability across a vineyard, and as a result the yield
predictions are inaccurate and spatially coarse.

[Author listamended on 23 September 2014 after error in first online
publication on 11 August 2014: The following authors have been
added: Srinivasa Narasimhan, Robotics Institute, Carnegic Mellon
University.]
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= We also overcome the challenges distinguishing the

There is a gap between the methods available to predict
the yield in a vineyard and the needs of vineyard managers
to make informed decisions for their vineyard operations.
Using carefully designed illumination and a camera sys-
tem (see Figure 1) paired with novel algorithms that auto-
matically detect the fruit within the imagery, our method
can make dense predictions of harvest yield efficiently and
nondestructively. We overcome difficulties in imaging and
design our camera and illumination setup to optimize for
low motion blur, increased depth-of-focus, and low illumi-
nation power for fast-recycle times permitting high-frame
rates. This design maintains high image quality at high ve-
hicle velocities and enables deployment at large scales, fea-
tures overlooked in many existing visual yield estimation
studies. Our results demonstrate that we can automatically.
detect and_count grapes o forecast yield efficiently with
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grape berries from similarly colored leaves, in nonuniform
lighting, and variable scales due to variable berry size or
variable distance of the fruit from the camera. Our approach
can be distinguished from a number of existing studies
on the detection of grapes, which are based upon one of
three different types of visual cues of grape berries appear-
ance: either color (Diago et al., 2012; Dunn & Martin, 2004),
shape (Rabatel & Guizard, 2007), or texture (Grossetete etal.,
2012). Each of the three cues has advantages in certain con-
ditions and, all have some limitations in others. Color on
its own is not suitable for distinguishing green grapes on a
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background of green leaves. The grape shape can be diffi-
cult to identify in cluttered images with leaves and other
spurious contours. Grape texture can be less distinguishing
under certain illumination conditions.

We take a different approach. Rather than focusing on
a single cue, we develop a robust and versatile algorithm
to detect grape berries under a variety of conditions by
exploiting all three main visual cues that grape berries have.
Our approach is to detect candidate hypotheses of where
grapes may be located in images using a shape transform,
and then classify these candidate locations using texture and
color descriptions within a robust classification framework
that exploits all the visual cues.

We develop a model that relates image measurements
to yield and optimize the model for two key goals:

1. accurate estimation of the spatial distribution of yield,
2. accurate estimation of the overall yield.
WN’W

Preliminary results of our approach were reported
in Nuske, Achar, Bates, Narasimhan, & Singh (2011) and
Nuske, Gupta, Narasihman, & Singh (2012). We extend our
prior work in the following ways:

© Present a study of three different visual texture descrip-
tions and evaluate each on a variety of datasets (Sections
3.2and 5.3.2).

" o Introduce a novel algorithm for berry keypoint detection
that is invariant to berry size (Section 3.1.2).

° Expand our model relating image measurements to yield
predictions and demonstrate how to optimize for accu-
racy (Section 4).

° Report on field experiments now spanning four growing-

seasons of multiple varieties and growing systems, total-
ing tens of acres of vines, all validated with true yield
measurements (Section 5).

The experimental results are the first visual vineyard
yield estimation results that are collected over hundreds
of vines and also encompassing multiple growing seasons.
Thisisasubstantially larger scale than other existing work—
by comparison, the next largest study in terms of dataset
size was a study using a static camera of 10 vines (Diago
etal., 2012). Their study artificially increased the size of the
dataset by defruiting vines sequentially, which increases
the distribution of yields but does not capture the true vari-
ance in leaf and vine occlusions and cluster-to-cluster oc-
clusions. Our system stands apart from existing approaches
in the complete design that solves all of the true imaging
and visual detection challenges. Our method is also the first
to present a way to eliminate the double-counting prob-
lem from overlapping imagery and also the challenge of
geometrically referencing the measurements by estimating
camera position along the row. Unlike other work, our ex-

)

periments are conducted from a moving vehicle in a com-

" pletely un-isolated fashion such that we replicate all issues

Journal of Field Robotics DOI 10.1002/rob

Nuske et al.: Automated Visual Yield Estimation o 839

that would be faced by a real deployment. No other study
so far has evaluated all the challenges and variables that
must be considered in a rigorous study, including variance
in visual detection performance, differences in berry-size,
detection of green juvenile berries, the variable distance of
the camera to the fruit zone, estimating location along the
vineyard rows, and the problems of leaf/vine occlusion and
cluster-on-cluster occlusion.

2. RELATED WORK

Viticultural studies (Clingeleffer, Dunn, Krstic, & Martin,
2001) have revealed that current industry practices to fore-
cast yield are inaccurate because of sampling approaches
that tend to adjust toward historical yields and include sub-
jective inputs. The calculation of final cluster weight from
weights at véraison (i.e., onset of color development) uses
fixed multipliers from historic measurements (Wolpert &
Vilas, 1992). The multipliers are biased toward healthier
vines, thus discriminating against missing or weak vines,
and multipliers for cluster weights vary widely by vine-
yard, season, and variety. In general, the approaches have
required manual samples of mean berry size, mean cluster
count, or mean cluster size (Serrano, Roussel, Gontier, Du-
fourcq, 2005), or a combination of the three, and then an
extrapolation to yield across a vineyard block.

Sensor-based technologies using trellis tension mon-
itors, multispectral sensors, ‘terahertz-wave imaging, and
visible-light image processing have all been proposed for
yield estimation in vineyards. A dynamic yield estimation
system based on trellis tension monitors has been demon-
strated (Blom & Tarara, 2009), but it requires a permanent
infrastructure to be installed. Further, variation in yield is
not the only cause of variations in trellis tension. Ambient
temperature and vine size also affect trellis tension, resulting
in.a loss of accuracy when relating tension to yield. Infor-
mation obtained from multispectral images has been used
to forecast yields with good results, but it is limited to vine-
yards with uniformity requirements (Martinez-Casasnovas
& Bordes, 2005). Related multispectral imagine work has
been applied to detecting almonds with a combination from
RGB and ir images (Hung, Nieto, Taylor, Underwood, &
Sukkarieh, 2013a). A proof of concept study by Federici,
Wample, Rodriguez, & Mukherjee (2009) has shown that ter-
ahertz imaging can detect the curved surfaces of grapes, and
it also has the potential to detect through an occluding thin
canopy. The challenge for this approach is to achieve fast
scan rates to be able to deploy the scanner on a mobile plat-
form while also having sufficient wavelength/resolution to
both detect as well as penetrate.

Conventional RGB camera imagery has been proposed
in a number of works as a means for fruit detection and
yield estimation. Jimenez et al. (Hung, Underwood, Nieto,
& Sukkarieh, 2000) provide a summary of fruit detection
work. Singh et al. (2010), Zhou, Damerow, Sun, and Blanke
(2012), Hung, Underwood, Nieto, & Sukkarieh (2013b), and
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Tabb, Peterson, and Park (2006) present methods for de-
tecting and classifying fruit pixels in imagery collected
in apple orchards. Yang, Dickinson, Wu, and Lang (2007)
demonstrated a similar approach to recognize tomatoes
for harvesting. A method presented by Berenstein, Shahar,
Shapiro, and Edan (2010) used a combination of color and
edge features for a coarse estimate of where grape clusters
and leaves reside in the images for the purpose of precision
spraying. A new method that uses 3D image reconstruc-
tions for fruit, leaf, and stem detection, demonstrated by
Dey, Mummert, and Sukthankar (2012), could classify fruit,
leaves, and shoots based on 3D reconstructions generated
from image sequences, which, unlike our work, is sensitive
to slight wind while imaging.

The most closely related works to ours in vineyard yield
estimation with image analysis can be divided by which
type of visual feature is used to identify the grapes within
images: color, shape, or texture.

Color discrimination has been demonstration by Dunn
& Martin (2004). This approach was attempted on Shiraz
post-véraison (red-grapes with full color development) in
short row segments. A similar color-based method that
detects fruit close to harvest after the onset of color-
developmentis presented by Diago etal. (2012) and Marden,
Liu, & Whitty (2013). These simple color-based methods
are not applicable for the majority of real-world examples
where the fruit appears over a background of similarly col-
ored leaves, as is the case in green grape varieties and in
all varieties before véraison. The contour and shape of the
berry is another method used to detect the fruit (Rabatel
& Guizard, 2007). The contour is more broadly applicable
to detect green grapes on green leaves, although partially
visible grapes and cluttered images filled with a variety of
contours on leaves and stems make it difficult to completely
distinguish the grapes using contour and shape alone. The
visual texture on the surface of the grape, especially when
imaged with an illumination source, is also a viable cue
for detection as exploited by Grossetete et al. (2012), who
demonstrate a hand-held device that can be used to mea-
sure the size of isolated clusters. Similar approaches detect
the shading on apples (Wang, Nuske, Bergerman, & Singh,
2012) and oranges (Swanson et al., 2010). All three types of
cues—color, shape, or texture—have seen some success in
detecting grapes, although none is convincing as a sole cue
for detecting the fruit. In our work, we demonstrate how to
exploit all three of these cues to create a strong classification
algorithm that separates berries from leaves and surpasses
the ability that can be achieved with one of these visual cues
alone.

Finally, in performing a comparison of our work to
all prior visual yield estimation studies, the most signifi-
cant differences are in terms of the scale of deployment and
also rigorous evaluation of all real-world considerations.
The only other works performed in which experiments in-
cluded measurements evaluated against total vine yield are

Diago et al. (2012) and Dunn & Martin (2004). These exam-
ples used limited sets of vines in their experimentation—10
vines and 1 vine, respectively. Both of these examples used
defruiting to artificially increase the size of the datasets,
which caused their experimental dataset to not be represen-
tative of the true variance in vine occlusions and cluster-to-
cluster occlusions. Also, they did not consider individual
berries, they only considered raw pixel count, which is sen-
sitive to the berry size, the distance from the vine, the focal
length, image resolution, as well as berry count (the desired
measurement). Also, they used a white sheet or white wall
backdrop to block out background disruptions. Further, to
draw more differences, our work is unique in that it is a
system that can be deployed from a moving vehicle though
the use of automatic image registration to deal with double
counting or undercounting of fruit. We also consider de-
tection of green juvenile fruit on a green leaf background.
There are other works that do look at detecting green berries
among green leaves, such as Grossetete et al. (2012) and Ra-
batel & Guizard (2007), but their experiments are restricted
to a small set of isolated clusters and do not evaluate to-
tal vine yield. Our work is the first system and study of
all these real-world considerations, and evaluation is per-
formed over hundreds of vines and four growing seasons.

3. BERRY DETECTION

We deploy a sideways-facing camera on a small vineyard
utility vehicle; see an illustration in Figure 6. The images
capture the vines and are processed with our algorithm to
detect and estimate the crop yield.

Yield in a vineyard is a combination of the following
crop components: the number of clusters, the number of
berries per cluster, and the berry weight. Given the vari-
ance in yield of a set of vines, this variance can be broken
down into the three yield components as follows (Clingel-
effer et al., 2001):

1. Variance in number of clusters per vine—contributes ap-
proximately 60% of the total yield variance.

2. Variance in number of berries per cluster—contributes
approximately 30% of the total yield variance.

3. Variance in berry size—contributes approximately 10%
of the total yield variance.

These three yield components combine to describe all
100% of variance in harvest yield. Current practice is to take
samples of each of these components to compute an average
and compute the final yield. We take an approach to estimate
the first two of these items together in one measurement—
that of the number of berries per vine. The reason for this is
that it is difficult, especially late in the season, to delineate
the boundaries of clusters within images. However, it is
possible to count the total number of berries seen, hence
combining the two components—number of clusters per

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Our yield estimation process is divided into three facets: detector-calibration to the left, berry-detection shown in the
center, and visibility-calibration to the right. The first facet is detector calibration, which uses a set of training images (we use a set
of 10 images), where grape locations are manually marked. The training images are processed to find grape keypoints (Section 3.1),
features are extracted at these keypoints (Section 3.2), and features are labeled as grape or nongrape features based on their
proximity to manually marked locations. The labeled feature-descriptors are then stored in a randomized KD-forest. Detection
performance is then characterized using the training set; this allows for the identification of the optimal voting ratio (Section 4.2)
and also the computation of a detection calibration function to account for trends in detection performance (Section 4.2.1). After
training, the core part of our approach is berry detection. Here, grape keypoints are found in each image, and then features are
extracted at the keypoints and classified as grape and nongrape using the randomized KD-forest with the optimal voting ratio
[Eq. (1)]. After detections are computed, the output is corrected using the function in Eq. (10) to estimate visible fruit. The final
part of our process is visibility calibration, which uses yield data (either from prior harvest or sparse in-season samples) to forma
calibration function [Eq. (17)] to estimate total yield from our dense image measurements.

-

vine and berries per cluster—into one measurement: berries
per vine.

Our approach does not attempt to measure berry
weight. However, we account for 90% of the harvest yield
variation with berries per vine (Clingeleffer et al., 2001).
Furthermore, instead of taking a small sample and extrap-
olating, we aim to estimate nondestructively the specific
yield at high resolution across the entire vineyard. Hence,
we will not introduce sampling errors into the process.

Journal of Field Robotics DOI 10.1002/rob

The overall process is presented in Figure 2, which is
splitinto three phases: berry-detection, detector-calibration,
and visibility-calibration.

Our algorithm, as first proposed in Nuske et al. (2011)
and expanded here, is split into the following stages:

(1) Detect potential berry locations (Section 3.1).
(2) Classifyand group the potential locations that have sim-
ilar appearance to grape berries (Section 3.2).
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3.1. Detecting Image Keypoints—Potential Berry
Locations

The first step of our algorithm is to find image keypoints that
are potential grape berry locations; see Figure 3(b). These
keypoints will later be classified as either berry or not-berry.

There are two reasons why we detect keypoints. The
first is to identify distinct grape-berries, which is impor-
tant to extract measurements that are invariant to the stage
of the berry development. Other work, such as Dunn &
Martin (2004) and Diago et al. (2012), detect grape pixels
only. However, the number of pixels that belong to fruit
will change as the grapes get larger, and therefore the mea-
surements will not be invariant to berry development. The
second reason is to reduce computation by only considering
a set of keypoints; this reduces the amount of the image that
is subsequently processed.

We present two keypoint detection algorithms. The first
is a radial symmetry algorithm [introduced by Loy & Zelin-
sky (2003)] that uses the circular shape of the berry as a cue
for detection. The second is a novel maximal point detection
algorithm that searches for the maximal point of shading in
the center of grapes that have been illuminated by a flash.
The two algorithms are introduced in the following two
subsections and evaluated later in Section 5.3.1.

3.1.1.

One approach we use is to search for points that have peaks
in a radial symmetry transform from Loy & Zelinsky (2003).
The radial symmetry transform requires us to know the
radii of the berries as seen in the image ahead of time. The
_ berry radii (in pixels) are dependent on the focal length
of the camera, the actual berry size, and the distance from
the camera. The focal length is kept fixed in our tests and
the vehicle maintains a relatively constant distance from
the vines. There is still variation in the radius in which the
berries appear in the image from differing berry sizes and
also some variation in location within the vine. We account
for this variation by searching for radially symmetric points
over a range of possible radii, finding points that exhibit the
most radial symmetry.

Radial Symmetry Transform

3.1.2.

We have developed an alternative keypoint detection algo-
rithm that searches for peaks in intensity corresponding to
grape centers. These peaks are found by finding local max-
ima in three-by-three kernels, and the peaks are validated
by an iterative growing procedure that identifies peaks with
symmetrical shading created by a flash. We continue in this
section to describe this procedure in more detail.

Lighting upon grapes is controlled, as flashes are po-
sitioned parallel to the camera’s optical axis to illuminate
the grapes (discussed in Section 5.1). This leads to grapes
that have a strong specular reflectance at the center of the

Invariant Maximal Detector

() Group Neighboring Berries

Figure 3. Example images showing the functioning of our vi-
sual berry detection algorithm. Input image is seen in (a). Key-
points, shown in (b), are the potential berry locations. In (c),
points marked in blue have been classified as having an ap-
pearance similar to a berry, and in (d) berries that neighbor
other berries are clustered together.

Journal of Field Robotics DOI 10.1002/rob
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(b)

(d)

Figure 4. Examples demonstrating the invariant maximal initial keypoint detector. Part (a) demonstrates the seeded growth into
regions of decreasing intensity over many iterations. Parts (b), (c), and (d) show the input image, the initial maximal points, and
the final keypoints that pass the seeded growing algorithm, respectively.

berry. From this point of specular reflectance, pixel intensity
decreases steadily toward the edges of the grape. If we can
find this point of specular reflectance, we can find a set of
keypoints that are potential berries.

There are other algorithms in the literature that detect
the shading on fruit produced by a flash, such as Grossetete
et al. (2012), Swanson et al. (2010), and our previous work
(Wang et al., 2012). However, these approaches do not con-
sider fruit of substantially different sizes, and they would
require some reconfiguration to function on fruit of different
size, or images with different resolution.

We present an approach that does not need a size pa-
rameter as input and can function on berries of substantially
different sizes, from 10 pixels in diameter up to well over
100 pixels in diameter.

The identification of potential grape centers in images
is as follows. Image noise is first eliminated through a Gaus-
sian pyramid downsampling operation. Then, an initial set
of local regional max within their immediate neighborhood
is identified; see Figure 4(c).

Filtering of this set is then achieved through an iter-
ative region growing method, operating on each regional
maxima. Regional maxima serve as the seed points to region
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growing. Through an iterative process, shown in Figure 4,
these seed points are grown and evaluated for symmetry
and decreasing intensity profile.

Ateachiteration, pixels of decreasing intensity adjacent
to the regional max are included in the region. This adds a
ring of pixels darker than the maxima but brighter than a
fraction of the maxima intensity (we use 85% as a threshold
for each ring). Once the new “ring” of darker pixels has
finished growing, a new iteration begins by growing a new
ring of pixels, which includes darker pixels than the previ-
ous ring but brighter than a fraction of the previous ring’s
intensity. Each image point can only belong to one grown
region. This ensures that after an initial region is grown, an
adjacent region cannot contain the same pixels, eliminating
overlapping maxima. This process repeats until a set num-
ber of rings has been added (three intensity levels) or one
of the following shape criteria has failed:

° First, the region’s centroid should be within a range of
the region’s maxima point.

° Second, the shape of the region should not become elon-
gated.
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A region that has three levels of decreasing intensity
and passes these two shape criteria is considered a possible
grape keypoint. Finally, a mask image of pixels that belong
to regions is maintained, such that each image point can
only belong to one grown region. This ensures that after an
initial region is grown, an adjacent region cannot contain
the same pixels, eliminating overlapping maxima.

3.2. Classifying Appearance of Candidate
Keypoints as Berry/Not-berry

The next stage in our algorithm is to classify the detected
keypoints into grapes or not-grapes; see Figure 3(c). We take
an image patch around each detected center and compute a
combination of both color and texture features from that im-
age patch. For the color features, we form a six-dimensional
vector from the three RGB channels and the three L*a*b
color channels.

Our initial work in Nuske et al. (2011) presented the use
of Gabor filters to classify the grape’s texture. In this paper,
we evaluate three different texture features from three broad
classes of features, and we will study the applicability of
each type of feature to a set of different imaging conditions.
In particular, we choose three of the broad categories:

1. Filter banks: used as far back as the 1980s (Laws, 1980)
in image texture classification tasks. We use Gabor filters
with four scales and six orientations and combine to form
a 24-dimensional feature vector, as per the original work
(Nuske et al., 2011).

2. Local texture features: proposed in the late 1990s, they
describe histograms of gradients (HoG), or similar vari-
ations, in a support region around an image location.
Here, we use a SIFT descriptor (Lowe, 2004) computed
in a support region centered at our candidate centers.
Since we are using our specific berry keypoint detec-
tion algorithms as presented in the previous section, we
do not use the SIFT keypoint detection step. The raw
descriptors total 128 dimensions, which we decimate
into its most discriminative axes using PCA into a 32-
dimensional vector.

3. Binary relations: a recent class of image features that
compile sets of pairwise binary intensity relations be-
tween pixels or regions surrounding an image location.
We use the Fast Retinal Descriptor (FREAK) (Alahi, Or-
tiz, & Vandergheynst, 2012), which is designed to mimic
the human retinal construction and is noted to achieve
higher performance rates than other recent binary fea-
tures [BRIEF (Calonder, Lepetit, Strecha, & Fua, 2010)].
Similar to the process used for SIFT descriptors, we per-
form dimensionality reduction from the 200 raw dimen-
sions into its most discriminative axes using PCA into a
32-dimensional vector.

We study these three types of features in the context
of three different illumination conditions with which we
have collected image data in vineyards: natural illumina-
tion, flash illumination, and cross-polarized flash illumina-
tion. Results of the study are presented in Section 5.

We concatenate the color and texture features to form
a set of candidate image features, I, computed at the berry
keypoint candidates. To classify the candidate features, we
use an a priori constructed randomized KD-forest (Lepetit,
Lagger, & Fua, 2005) from a set of training samples, T, ex-
tracted from a subset of images. We manually define berry
centers in the training images that correspond to the posi-
tive examples of the appearance of berries, T,. For negative
samples, T, we compute features at our detected keypoints
that do not align with a manually defined berry center.

Then for each candidate feature [ (i) we extract a set
of nearest nodes T (i), from the randomized KD-forest. We
then vote on the class of each interest point by comput-
ing a ratio of the number of positively labeled features,

T.= [”.”:l," , to the total size of the candidate feature set.
We define a threshold, t,, applied to the voting ratio, which
is adjusted to control how conservative or liberal the clas-
sification is. Our resulting set of classified berries is b, € I,

where

T >rz,. (1)

We group these detected berries into clusters less than
a threshold in distance from each other. We remove clusters
of detections that are smaller than an area threshold, which
removes spurious detections; see Figure 3(d).

3.3. Combining Berry Detections in Image
Sequences

Since we are collecting data from a moving platform and
wish to produce yield estimates that are assigned to specific
locations in the vineyard, it is not sufficient merely to be
able to detect grapes in an image. First, we need to have
state information for the data collection vehicle to be able
to back-project the grape detections from each image to a
position along the vineyard row. Second, we need to use
the registered grape locations to avoid double counting of
grapes between consecutive images.

To gain state estimation for the data collection vehicle,
we use a second camera facing backward from the vehi-
cle angled at approximately 45 down toward the ground
for positioning. The downward-facing camera is a stereo
pair and we use a visual odometry algorithm (Kitt, Geiger,
& Lategahn, 2010) to track the position of the vehicle as it
moves along the row. With state information data for the ve-
hicle, individual grapes can be registered to locations on the
local fruit wall. The problem is that there can be significant
overlap between consecutive images. This overlap needs
to be accounted for during grape registration to prevent a
single grape from being counted multiple times.

Journal of Field Robotics DOI 10.1002/rob



The process to identify individual grapes is as follows.
First, the detections from each image from a vineyard row
are back-projected onto the local fruit wall. The entire length
of the row is then partitioned into short segments (around
0.5 m in length). A segment that contains projected grape
detections from more than one image is a region in which
camera views overlapped. The detections from the image
with the most detections lying in the segment are retained,
and detections in the segment from the other images are
discarded. This heuristic is used to choose the image where
the effect of occlusions was minimum. Taking the maximum
image measurement rather than attempting to merge all im-
age measurements together avoids the issue of attempting
to do fine registration while fruit is moving from wind or the
vehicle pulling at the vine. Each segment now has a visible
berry count associated with it, and this can be aggregated
over rows, vines, or sets of vines.

4. RELATING IMAGE-BASED MEASUREMENTS TO
YIELD PREDICTIONS

The previous section describes how to detect berries within
images. This section describes how to take these image mea-
surements and form an estimate of fruit yield; Figure 2 ex-
plains the procedure.

Viticulturists have long studied the process of predict-
ing the size of the harvest yield, and they have developed
models of the various yield components (Clingeleffer et al.,
2001). In the most basic form, the weight of the harvest (W)
can be expressed as a product of the number of berries (N,)
and the mean weight of the berries (W,),

Wh = I.Vh WI:- (2)

Our approach to predict the yield at harvest time is fo-
cused on measuring the number of berries (¥,). The number
of berries is stable shortly after berry set (once the period
known as shatter is passed) and it accounts for 90% of the
variation in yield (Clingeleffer et al., 2001); varying berry
weight is responsible for the remaining 10%. Our berry
count formsa part of a yield forecasting function, f(-), which
outputs an estimate (N,) of the actual berry count:

N, = f(N}). )]

4.1. Visible Berries and Estimating Self-occlusions

In our prior work (Nuske et al., 2011) we used the visible
berry count as a prediction of the cluster size, assuming the
detected berry count is proportional to the total berry count:

Ny, o N, @

In the Results section (Section 5.4), we study the visible
berry count in controlled experiments, and also, in an at-
tempt to improve the measurement of the occluded berries
in a cluster, we propose two potential modifications.
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The first alternative measurement we propose is to take
the convex hull formed by all the visible berries in the clus-
ter. Assuming the cluster has uniform density and an aver-
age thickness of the grape cluster to be D, we multiply the
area A to this fixed cluster depth, and we normalize with
the average berry radius R,

A .
N, n X DR_IP" . (5)

The second alternative is to predict the size of a cluster
using a 3D ellipsoid model. A grape cluster’s volume can be
approximated with an ellipsoid cutting off the image plane
as an ellipse. We find the best-fit ellipse for the berry center
locations with same normalized second central moments.
Given the semiaxes of the ellipse in pixels R; and R, with
Ry = R,, the volume of the corresponding ellipsoid would
be proportional to the volume occupied by the berries (B,) in
the cluster. Using the average berry radius (R,) of the cluster,
we can calculate the total number of berries occupied by the
cluster:

4 5
chgﬂ;ﬁrz'.
(4 )

N, =V. gﬂ'l's . (6)

We study these three approaches to measuring grape

cluster size in controlled laboratory tests in the Results sec- .

tion (Section 5.4).

4,2. Optimizing for Yield Estimate Accuracy

Ultimately, the goals are to achieve accurate yield estimates.
In this section, we isolate the metrics of interest and present
a means to optimize our algorithm to improve spatial yield
estimation accuracy.

There are two requisites for N, in terms of accuracy:

1. Accurate estimate of overall yield. Minimizing the error
term: e,.

2. Accurate estimate of spatial yield. Minimizing the error
term: e,.

S oo

(. Rl () -

T (N}

Z(Nj — N

“ = N, — s(NDE" @

where Nj is the number of berries on the ith vine.

We will revisit details regarding e, and e, later, but we
begin by introducing a function f that captures the relation-
ship between the detected fruit in the camera image N} to
the total fruit N,,.
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4.2.1.

There are errors in the visual detection process that must
be modeled. In Nuske et al. (2011), the performance of the
detection algorithm was analyzed to find that the algorithm
does not detect some berries visible to the camera, and to a
lesser extent there are some occasions when the algorithm
falsely reports a berry where there was not one.

We form a measurement of detection using a sample
of images where the berry centers have been manually
marked, enabling us to measure three metrics: true posi-
tives (TP)—the number of berries detected that were actual
berries; false positives (FP)—the number of false berry de-
tections; and false negatives (FN)—the number of berries
visible in the image that were not detected. Our measure,
k,, exactly defines the rate of visible berries that are detected
by the system,

Detection-Calibration

TP
TN ®)
We take k,;, which is the true positive rate, together
with the false positives (FP) expressed as a number per
linear length of vineyard, and it can be applied to the level

of detected fruit N to estimate the amount of visible fruit:

Nj = fuN{, %, FP) =

b Kds

W —FR) (10)
K.

Importantly, unlike «,, the number of false positives
is decoupled from the total number of visible fruit. This
decoupled behavior was discovered empirically through
our analysis and readily understood and explained, since

" vines with little or no fruit will induce a similar amount of
false positives as vines with larger amounts of fruit.

We use this function to correct for variable detection
performance arising from the differing appearance of the
vines and variable imaging and lighting configurations.

Referring back to our error, we wish to minimize, ¢,,
in Eq. (8), which is in fact directly related to the correlation
measure r> = 1 — ¢,; the portion of the error term we care
most about is the squared error term of the predicted yield
compared to the true yield: E(I\AI,‘, — N))~

Our model of detected to visible to total fruit is a linear
system, and the terms can all be calibrated in closed form re-
gression. Assuming there is sufficiently accurate calibration
data, the squared error term will only be nonzero under the
presence of some unmodeled variance in our model. It is
expected that there is some nonzero variance in our occlu-
sion term «,,, where we use the notation for the the standard
deviation of this term as o, _, which reforms the equation as

N

N,-, = f,(NA,‘i,K s Oy, ) = Tg(o’)

(11)

where g() is a zero-mean Gaussian function. At present, in
the absence of a known method to estimate this variance,
o (k,), we leave this as an unmodeled error.

However, there is another source of variance, which is
the deviation within our detection function o (f,(-)). This
variance in the detection function is possible to minimize,
which in turn will optimize ¢.. Using hand-labeled training
images to analyze our berry detection system, we find that
there are two different behaviors in the detection function,
one in which the mean of the true positive berries output by
our system is linearly related to the visible fruit, and another
in which we find false positives to be modeled as a variable
(B) unrelated to the visible fruit:

TP = N,[a +g(o. )], (12)

FP = B[1+g(o))]. (13)

Thus, we can rewrite our relationship to visible fruit as
follows:
. N/
Nj= — ; (14)
a+g(o,)+ Bl + g(oy)]

g(o,) and g(o ;) are the two sources of variance in the detec-
tion function, and in a well-calibrated system they will be
directly proportional to the squared error term:

u(N;)g(o.) | m(EP)g(ay)

P R

We have now identified the terms responsible for spa-
tial accuracy, and we can develop an optimization strategy.
The key variable in our berry classification algorithm is the
threshold on the randomized KD-forest voting ratio, 7, from
Eq. (1). We use this as the variable to optimize against com-
puting the minimum of our error term:

CuNise) | wEP)g(e)
A(TP) )

The error term and its components are graphed to-
gether in Figure 5. The r, parameter is adjusted to balance
the variance in the false positives in the system and the vari-
ance in true positives, and the optimal point is captured by
the error term. The minimal point on the error term curve
is used to ultimately reflect the maximal R* value against
a vineyard dataset. Later in the Results section, this opti-
mization is studied for different texture feature descriptors
(Section 5.5).

(N - N))*

arg min (16)

4.2.2. Visibility Calibration
Once a corrected estimate of visible fruit is derived, we form
a second function, f,(), relating the visible estimate of fruit
to the total fruit as follows:

N, = f(N,,x,)=—N_. 17)

F=
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